BVLLAL

BNI DNT-502-100-Z001 DeviceNet[™] IO-Link Master User´s Guide

Contents

1	General 1.1. Structure of the Manual 1.2. Typographical conventions Enumerations	3 3 3 3
	Actions Syntax Cross-references	3 3 3
	1.3. Symbols 1.4. Abbreviations 1.5. Deviating views	3 3 3
2	Safety	4
	2.1. Intended use 2.2 Installation and Startun	4
	2.3. General safety notes	4
	2.4. Resistance to Aggressive Substances	4
3	Connection overview	5
	3.1. Module overview	5
	3.3. Supply voltage connection	6
	3.4. Function ground	6
	3.5. DeviceNet connection	7
	3.6. Connecting sensors / actuators	8
	3.7. Connecting IO-Link devices 3.8. Replacing BNI DNT modules	9
4	Disnlav	10
-	4.1. General	10
	4.2. Default settings	10
	4.3. Controls and visualization	10
	4.4. Display information	10
	4.6. Edit mode	12
5	DeviceNet™	13
	5.1. Node Adress, baud rate, I/O size	13
	5.2. AutoBaud	13
	5.3. I/O Data 5.4. User specific objects	13
	Gateway class	14
	IO-Link channel class	14
	ISDU class	15
	ISDU class (ASCII)	15
	Standard I/O class	16
	5.5. Parameter object	17
6	Module configuration	18
	6.1. Overview	18
	6.2. General settings	18
	Produced I/O size	18
	Fror while parameter upload in RSNetworx	18
	Heartbeat	21
	Quick connect	21
	IO-Link port enable	21
	Setting done	21
	o.s. IO-LINK Specific settings	22

		Port status	22
		Port mode	22
		Validation type	23
		Validation Vendor ID (ASCIL HEX)	23
		Validation Device ID (ASCII HEX)	23
		Validation SerNum (ASCII)	23
		Data storage	24
		Parameter server	25
		Upload flag on the IO-Link device	25
	6.4.	ISDU specific settings	26
		Status #(n) and Status #(n) (ASCII HEX)	26
			27
		Subindex	27
		Data length	28
		Data and Data (ASCII HEX)	28
		Send request	28
	6.5.	Events	29
		Event #(n) (ASCII HEX)	29
	6.6.	Standard I/O specific settings	30
		Input status	30
		Ouput status Overload status	30
		Short circuit status	30
		Aux power status	30
		Output reset status	31
		Fault state (00 ~ 15)	31
		Idle state (00 ~ 15)	31
	6.7.	EDS file	31
	0.8.	Baud rate, Node Adress	31
7	Da	ata mapping details	32
	7.1.	Port configuration	32
	7.2.	I/O data details	33
		Fixed produced bytes	33
		IO-I ink hytes	36
_	_		
8	Te	ichnical data	37
	0.1.	Dimensions Mechanical data	37
	8.3.	Operating conditions	37
	8.4.	Electrical data	37
	8.5.	DeviceNet™ port	38
	8.6.	DeviceNet [™] default settings	38
	8.7.	Function indicators	38
		Status LED	38
		LED indicators input ports	38
		LED indicators JOLI ink channels	30
_	-		50
9	A	ppendix	39
	9.1. o.2	I ype code Ordering information	39
	9. Z .	Scone of delivery	30
			03
No	ote		40

1 General

1.1.	Structure of the	The guide is organized so that the sections build on one another.		
	mandal	Chapter 2: Safety		
1.2.	Typographical conventions	The following typographical conventions are used in this guide.		
	Enumerations	 Enumerations are shown as a list with a dot. Entry 1, Entry 2. 		
	Actions	Action instructions are indicated by a preceding triangle. The result of an action is indicated by an arrow. Action instruction 1. Action result. Action instruction 2. Procedures can also be shown as numbers in brackets. (1) Step no. 1 (2) Step no. 2		
	Syntax	 Numbers: Decimal numbers are shown without additional indicators (e.g., 123), Hexadecimal numbers are shown with the additional indicator hex (e.g., 00hex), or with the prefix "0x" (e.g. 0x00) 		
	Cross-references	Cross-references indicate where further information on the topic can be found.		
1.3.	Symbols	Attention! This symbol indicates a security notice which must be observed.		
		Note This symbol indicates general notes.		
1.4.	Abbreviations	BNIBalluff Network InterfaceDNTDeviceNet™EMCElectromagnetic CompatibilityESDElectrostatic DischargeFE/PEFunction Earth (or Ground) / Protective EarthRFRadio FrequencyIOLIO-LinkSIOStandard Input / Output (I/O)		
1.5.	Deviating views	Product views and illustrations in this manual may differ from the actual product. They are intended only as illustrative material.		

2 Safety

2.1. Intended use	The Balluff BNI DNT-502-100-Z001 fieldbus module serves as a decentralized Input and Output module for connecting to a DeviceNet [™] network. The implemented IO-Link ports enable simple linking of IO-Link capable sensors and actuators. The module may be used only for this purpose in an industrial environment corresponding to the EMC standards and directives.		
2.2. Installation and Startup	Attention! Installation and startup must only be carried out by trained technical personnel. Qualified personnel are people who are familiar with installation and operation of the product and have the necessary qualifications for these tasks. Any damage resulting from unauthorized tampering or improper use voids the manufacturer's guarantee and warranty. The operator must ensure that appropriate safety and accident prevention regulations are observed.		
2.3. General safety notes	 Commissioning and inspection Before commissioning, carefully read the operating manual. The system must not be used in applications in which the safety of persons is dependent on the function of the device. Authorized Personnel Installation and commissioning may only be performed by trained specialist personnel. Intended use Warranty and liability claims against the manufacturer are rendered void by: Unauthorized tampering Improper use Use, installation or handling contrary to the instructions provided in this operating manual Obligations of the Operating Company The device is a piece of equipment from EMC Class A. Such equipment may generate RF noise. The operator must take appropriate precautionary measures. The device may only be used with an approved power supply. Only approved cables may be used. Malfunctions In the event of defects and device malfunctions that cannot be rectified, the device must be taken out of operation and protected against unauthorized use. Intended use is ensured only when the housing is fully installed. 		
2.4. Resistance to Aggressive Substances	Attention! The BNI modules always have good chemical and oil resistance. When used in aggressive media (such as chemicals, oils, lubricants and coolants, each in a high concentration (i.e. too little water content)), the material must first be checked for resistance in the particular application. No defect claims may be asserted in the event of a failure or damage to the BNI modules caused by such aggressive media. Note Note		
	In the interests of product improvement, Balluff GmbH reserves the right to change the technical data of the product and the content of this manual at any time without notice.		
	Before maintenance, disconnect the device from the power supply.		

3.1. Module overview

1	Mounting hole	12	Port 2 (IO-Link, Standard I/O)
2	DeviceNet bus IN	13	Port 1 (Standard I/O)
3	Display	14	Port 0 (Standard I/O)
4	Button (↑)	15	Module Status LEDs
5	Power Supply IN	16	Power Supply OUT
6	Port 4 (Standard I/O)	17	Label
7	Port Status LED	18	Button (S)
8	Port 5 (Standard I/O)	19	Feedback LED
9	Port 6 (IO-Link, Standard I/O)	20	DeviceNet bus OUT
10	Port 7 (IO-Link, Standard I/O)	21	Grounding connection
11	Port 3 (IO-Link, Standard I/O)		5

3.2. Mechanical connection

The module can be fixed using 2x M6 screws and 2x washers. Isolation pad as accessory is available.

3.3. Supply voltage connection

Power In (7/8 Mini- Change 4 pin, male)

	Pin	Function	Description
	1	+24V	Actuator Supply
	2	+24V	Sensor / Module Supply
2 4	3	0V	Sensor / Module GND
	4	0V	Actuator GND

Power Out (7/8 Mini- Change, 4 pin, female)

	Pin	Function	Description
$^{3}(0 0)^{1}$	1	+24V	Actuator Supply
$(\mathbf{a} \mathbf{a})$	2	+24V	Sensor / Module Supply
4 2	3	0V	Sensor / Module GND
	4	0V	Actuator GND

Note

Provide sensor/bus power and actuator power from separated power sources wherever possible to minimize noise susceptibility. Total current < 9A. The total current of all modules may not exceed 9A even when daisy chaining the actuator supply.

i

Note

Note

Unused sockets must be fitted with cover caps to ensure the IP67 protection rating.

Module and connected sensors are powered by the "module and sensor supply", while the "actuator supply" powers all outputs. The only exception is pin 4 on all IO-Link ports, here the outputs are powered by the "sensor supply".

3.4. Function ground The ground connection of the BNI DNT-502-100-Z001 modul is located at the upper left next to the mounting hole.

large cross-section may be used.

Ground straps are preferred for the ground connection. Alternately a fine-strand PE wire with

Note

The FE connection from the housing to the machine must be low-impedance and kept as short as possible.

3.5. DeviceNet connection

The DeviceNet connection is made using the M12 sockets Bus IN and Bus OUT (A-coded)

Bus IN: (M12, A-coded, male)

4

Pin	Function
1	Drain
2	CAN +24V
3	CAN GND
4	CAN H
5	CAN L

Bus OUT: (M12, A-coded, female)

2	Pin	Function
	1	Drain
5	2	CAN +24V
	3	CAN GND
	4	CAN H
ļ	5	CAN L

0 0

Attention!

DeviceNet[™] network should be grounded at ONE location. Grounding at more than one location may produce ground loops, while not grounding the network will increase sensitivity to ESD and outside noise sources.

Both ends of the DeviceNet[™] network must be terminated with a terminating resistor.

Note

Note

Unused sockets must be fitted with cover caps to ensure the IP67 protection rating.

3.6. Connecting sensors / actuators

4 configurable SIO ports are provided for connecting actuators and sensors.

Standard I/O Port (M12, A-coded, female)

4

Pin	Function
1	+24V, 200mA
2	Input / Output 2A
3	0V
4	Input / Output 2A
5	FE

Note For th

For the digital sensor inputs, read the input guideline specified in EN 61131-2, Type-2.

The transmission time of the digital inputs from sensor to control is max. 130 ms.

Note

Each output serves a maximum current of 2A. Total current of the module has to be lower than 9A.

Note

Unused I/O port sockets must be fitted with cover caps to ensure IP67 protection rating.

3.7. Connecting IO-Link devices 4 configurable SIO + IOL ports are provided for connecting actuators / sensors / IO-Link devices.

Standard I/O and IO-Link Port (M12, A-coded, female)

	Pin	Function
2	1	+24V, 1.6A
0 \	2	Input / Output 2A
○)3	3	0V
0 4	4	IO-Link / Input / Output 1.4A
	5	-

Note

For the digital sensor inputs, read the input guideline specified in EN 61131-2, Type-2.

i

Note

Each output serves a maximum current of 2A. Except the IO-Link ports what serves a maximum current of 1.4A. Total current of the module has to be lower than 9A.

Note

Unused I/O or IOL port sockets must be fitted with cover caps to ensure IP67 protection rating.

∕∖∖

Note

Due to limited CPU resources, only a maximum of three IO-Link-devices with COM3 speed can be reliably handled. It is therefore recommended not to use all 4 IO-Link-Ports for COM3 IO-Link Devices simultaneously.

Connection options for the DNT modules:

Module	Standard I-Port	Standard O-Port	IO-Link Port
BNI DNT-502-100-Z001	Max 16	Max 16	Max 4

3.8. Replacing BNI DNT modules

Attention!

Components may be damaged by electrostatic discharge.

- Observe rules for handling components that are sensitive to electrostatic discharge.
- > De-energize the DeviceNet module.
- Remove connections.
- Remove the mounting screws.
- Replace the device.

4 Display

Cursor for selecting the baud rate

4 Display

- Press for short time the "Arrow" key to scroll in the menu and to increase the edited value
- Press for long time the "Set" key to enter or exit from the edit menu
- Press for short time the "Set" key to scroll in the edit menu

4 Display

4.6. Edit mode

- long push (>3s) on (S) \rightarrow edit mode is activated, display information is flashing
- push on (S) → change between address and baud rate editing
- push on $(\uparrow) \rightarrow$ increment value by one
 - long push (>3s) on (S) \rightarrow leave edit mode and save the changes
- after 10 seconds without any key press, the changes are discarded and display returns to normal mode

Note

When the Display Lock bit is set, the user is unable to modify settings via the display. In locked state a key symbol indicates that the status is active.

Note

Each DeviceNet[™] node must have a unique address assigned to it and the entire bus participants must be assigned the same baud rate.

5 DeviceNet[™]

5.1. Node Adress, baud rate, I/O size

Parameter name	Value
Node Adress	063
Baud rate	125k, 250k, 500k, AutoBaud
Produced I/O size	8 ~ 136 bytes
Consumed I/O size	6 ~ 134 bytes

5.2. AutoBaud
The AutoBaud function is selectable only via the display. After the next power up, the module will try to find out the communication speed used on the channel by listening. In case the used baud rate is one of the valid speeds /125k, 250k 500k/, DNT communication is going to be initialized using this setting. In case no valid baud rate could be detected, default baud rate will be used. This takes effect right after the detection. After the next start-up, the baud rate setting will be the detected baud rate. In case the detection has failed, AutoBaud will remain.

5.3. I/O Data The I/O message size depends on the settings of the IO-Link channels. The minimum I/O message sizes are 8 bytes for Input and 6 bytes for Output with disabled IO-Link ports. The maximum I/O message sizes are 136 bytes for Input and 134 bytes for Output if all IO-Link channels are enabled and each channel port mode setting was set to 32/32 bytes.

I/O data produced by the module		I/O data consumed by the module		
Byte	Name	Byte	Name	
0	Input Status	0	Output State	
1	input Status	1	Output Otale	
2	Overlead Status	2	Output Reset	
3	Overload Status	3		
4	Short Circuit Status	4	Display	
5	Aux Power Status	5	Empty	
6	IO Link Status			
7	IO-LINK Status	(0~32) Bytes	Output Data	
IOL CH1 (0~32) Bytes	IO-Link Channel 1		IO Link Channel 2	
(0 02) Bytee	input Buta	(0~32) Bytes	Output Data	
	IO Link Channel 0			
(0~32) Bytes	Input Data		IO Link Channel 3	
(* *=) =) ***		(0~32) Bytes	Output Data	
	IO Link Channel 2			
(0~32) Bytes	IO-LINK Channel 3		10 Link Channel 4	
(0 02) 29100	input Data		Output Data	
			•	
IOL CH4 (0~32) Bytes	IOL CH4 IO-Link Channel 4 (0~32) Bytes Input Data			
(0 02) Bytoo	input Bulu			

5 DeviceNet[™]

5.4. User specific objects

User specific DeviceNet[™] objects are used to configure, control the module, and access ISDU IO-Link Data.

Gateway	
class	

DeviceNet Gateway Class			
0x64			
2			

Attributes				
Name	Attribute ID	Size (Byte)	Data Type	Access
Number of Attributes	1	1	USINT	R
Attribute List	2	8	BYTE	R
Produced I/O Size	3	1	USINT	R
Consumed I/O Size	4	1	USINT	R
Heartbeat	5	1	USINT	R/W
Quick Connect	6	1	BOOL	R/W
IOL Port Enable	7	1	BYTE	R/W
Settings Done	8	1	BOOL	R/W

Services	Instances	
Name	0	
GET_SINGLE_ATTR	0x0E	
SET_SINGLE_ATTR	0x10	

This class holds general configuration options of the BNI module. It supports only class level services, so only Instance 0 can be accessed.

IO-Link channel class

IO-Link Channel Class			
Class ID	0x65		

Attributes				
Name	Attribute ID	Size	Data Type	Access
Number of Attributes	1	1	USINT	R
Attribute List	2	10	BYTE	R
Port Status	3	1	BYTE	R
Port Mode	4	1	USINT	R/W
Data Format	5	1	BOOL	R/W
Validation Type	6	1	USINT	R/W
Valid. Vendor ID (ASCII HEX)	7	4	SHORT_STRING	R/W
Valid. Device ID (ASCII HEX)	8	6	SHORT_STRING	R/W
Valid .SerNum (ASCII)	9	16	SHORT_STRING	R/W
Data Storage	10	1	USINT	R/W

Services	Instances	
Name	14	
GET_SINGLE_ATTR	0x0E	
SET_SINGLE_ATTR	0x10	

The IO-Link channel class holds the configuration options for the IO-Link channels. No class level (Instance 0) operations are enabled. Instances 1...4 are bound to the IO-Link channels of the module, respectively.

5 DeviceNet™

ISDU class

ISDU Class			
Class ID	0x66		
Attribute	S]	
Name	Attribute ID	Size (Byte)	Data Type
Number of Attributes	1	1	USINT
Attribute List	2	11	BYTE
Status #1	3	4	BYTE
Status #2	4	4	BYTE
Status #3	5	4	BYTE
Action	6	1	USINT
Index	7	2	UINT
SubIndex	8	1	USINT

9

10

11

Services		
Name	Service ID	
GET_SINGLE_ATTR	0x0E	
SET_SINGLE_ATTR	0x10	

ISDU Class (ASCII)

Data Length

Data

Send Request

Instances
14

1

232

1

This class is for accessing ISDU Data of the IO-Link device on the corresponding IO-Link channel. There are no class level operations with instance 0 available.

ISDU class (ASCII)

Class ID	0x67		
		_	
Attribute	S		
Name	Attribute ID	Size (Byte)	
Number of Attributes	1	1	
Attribute List	2	11	
Status #1 (ASCIL HEV)	2	0	

Name	Attribute ID	Size (Byte)	Data Type	Access
Number of Attributes	1	1	USINT	R
Attribute List	2	11	BYTE	R
Status #1 (ASCII HEX)	3	8	SHORT_STRING	R
Status #2 (ASCII HEX)	4	8	SHORT_STRING	R
Status #3 (ASCII HEX)	5	8	SHORT_STRING	R
Action	6	1	USINT	R/W
Index	7	2	UINT	R/W
SubIndex	8	1	USINT	R/W
Data Length	9	1	USINT	R/W
Data (ASCII HEX)	10	64	SHORT_STRING	R/W
Send Request	11	1	BOOL	R/W

Services		
Name	Service ID	
GET_SINGLE_ATTR	0x0E	
SET_SINGLE_ATTR	0x10	

Instances
14

This class is for accessing ISDU Data of the IO-Link device on the corresponding IO-Link channel with limited size of data. There are no class level operations with instance 0 available.

Access R R R R R R/W R/W

R/W

R/W

R/W

R/W

USINT

BYTE

BOOL

5 DeviceNet™

Standard I/O class

Standard I/O Class Class ID 0x69

Attribu	tes	1		
Name	Attribute ID	Size (Byte)	Data Type	Access
Number of Attributes	1	1	USINT	R
Attribute List	2	40	BYTE	R
Input Status	3	2	WORD	R
Output Status	4	2	WORD	R
Overload Status	5	2	WORD	R
Short Circuit Status	6	1	BYTE	R
Aux Power Status	7	1	BYTE	R
Output Reset Status	8	2	WORD	R
Fault State 00	9	1	USINT	R/W
Fault State 01	10	1	USINT	R/W
Fault State 02	11	1	USINT	R/W
Fault State 03	12	1	USINT	R/W
Fault State 04	13	1	USINT	R/W
Fault State 05	14	1	USINT	R/W
Fault State 06	15	1	USINT	R/W
Fault State 07	16	1	USINT	R/W
Fault State 08	17	1	USINT	R/W
Fault State 09	18	1	USINT	R/W
Fault State 10	19	1	USINT	R/W
Fault State 11	20	1	USINT	R/W
Fault State 12	21	1	USINT	R/W
Fault State 13	22	1	USINT	R/W
Fault State 14	23	1	USINT	R/W
Fault State 15	24	1	USINT	R/W
Idle State 00	25	1	USINT	R/W
Idle State 01	26	1	USINT	R/W
Idle State 02	27	1	USINT	R/W
Idle State 03	28	1	USINT	R/W
Idle State 04	29	1	USINT	R/W
Idle State 05	30	1	USINT	R/W
Idle State 06	31	1	USINT	R/W
Idle State 07	32	1	USINT	R/W
Idle State 08	33	1	USINT	R/W
Idle State 09	34	1	USINT	R/W
Idle State 10	35	1	USINT	R/W
Idle State 11	36	1	USINT	R/W
Idle State 12	37	1	USINT	R/W
Idle State 13	38	1	USINT	R/W
Idle State 14	39	1	USINT	R/W
Idle State 15	40	1	USINT	R/W

5 DeviceNet[™]

Services	5	Instances
Name	Service ID	0
GET_SINGLE_ATTR	0x0E	
SET_SINGLE_ATTR	0x10	

This class holds configuration options for the standard inputs and outputs. It supports only class level services, so only Instance 0 can be accessed.

Event class

Event Class		
Class ID	0x68	

Attributes	6			
Name	Attribute ID	Size (Byte)	Data Type	Access
Number of Attributes	1	1	USINT	R
Attribute List	2	5	BYTE	R
Event #1 (ASCII HEX)	3	6	SHORT_STRING	R
Event #2 (ASCII HEX)	4	6	SHORT_STRING	R
Event #3 (ASCII HEX)	5	6	SHORT_STRING	R

Services	5	Instances
Name	Service ID	14
GET_SINGLE_ATTR	0x0E	

This class gives access to the events recorded by the master on the corresponding IO-Link Channel. There are no class level operations with instance 0 available. All attributes of this class are Read Only.

5.5. Parameter object Using parameter object is a way to store parameter data. However, it is not mandatory to implement. For the DNT-502-100-Z001 module no parameter object is implemented. All the parameter –configuration- data is stored in the user specific object instances.

6.1. Overview Settings of the module can be accessed via the DeviceNet Gateway Class, Standard I/O Class and instances of the IO-Link related Classes.

Settings are stored in the non-volatile memory. After start-up, data is checked for a valid configuration. If no configuration is stored, default settings are going to be used.

Since configuration is read out at start-up sequence, any changes will only take effect after module reset what can be done by the "Settings Done" flag. The Standard I/O Class settings are handled separately from the others. Any changes in these settings will be applied immediately.

Bus related settings such as Node Adress and baud rate are handled separately too. The fact that configuration has been changed is displayed on the status LEDs to notify the user.

 6.2. General settings
 General /not IO-Link specific/ settings are stored in Instance 0 of class DeviceNet Gateway Class.

Produced I/OThis shows the actual size of the produced I/O message. This size depends on the enabled
number of the IO-Link channels and the settings of the channels. This value should be set in
the scanner settings.

Consumed I/OThis shows the actual size of the consumed I/O message. This size depends on the enabledsizenumber of the IO-Link channels and the settings of the channels. This value should be set in
the scanner settings.

The following example shows the correct settings of the I/O parameters of a DeviceNet[™] Scanner Card.

Error while parameter upload in RSNetworx

After scanning the devices in RSNetworx, you have to upload the Parameter data of the BNI DNT-502-100-Z001 to configure the device.

In case of a previous configuration, in can happen that the scannercard of the PLC is not able to upload the parameter data. This can happen, when IO-Message size on the Devicenet bus is too large (for example when all IO-Link ports were activated in a previous configuration). Here, the PLC cannot respond in time with ACK and sends a timeout.

To fix that Problem, you have to modify the expected packet rate:

The ACK timeout settings also have to be modified in case of an parameter upload error:

	General Module Scanlist Input Dutput ADR Summary
	Available Devices: Scanlist:
	Edit I/O Parameters : 03, BNI DNT-502-100-Z001
	☐ Strobed: Change of State / Cyclic
Advanced COS/Cyclic Settings	Input Size: Bytes Change of State C Cyclic
Modifying these settings may disrupt network	Use Dutput Bit: Input Size: 72 - Bytes
communication. Do not modify unless instructed to do so by a technical support representative.	Polled: Output Size: 70 - Bytes
	Input Size: Bytes Heartbeat Rate: 1000 🛨 msec
Timeout: 128 - msec	Output Size: 0 Bytes Advanced
	Poll Hate: JE very Scan
Inhibit Time: 1 💼 msec	OK Cancel Restore I/O Sizes

Note

Please change these two settings only in case of timeout problems while uploading the parameter data of the BNI DNT-502-100-Z001.

Heartbeat Describes how often the module should send the Heartbeat signal on the DeviceNet[™] network, the value is entered in seconds. 0 [sec] means that this function is disabled, the maximum value is 255 [sec].

Byte	Value	Description
0	0x00 ~ 0xFF	Second(s)

Quick connect The Quick connect mechanism is recommended to use in highly dynamic systems with frequent device changes such as robots with exchangeable tools that contains active devices. By this mechanism the standard reconnecting time (between 4 and 10 seconds) can be bypassed and reduced to under 2 seconds

Byte	Value	Description
0	0	Disabled
	1	Enabled

IO-Link port enable Controlling whether the corresponding IO-Link channel is configured as IO-Link or reverts to be a standard I/O channel. The Bits from 0...3 control the IO-Link channels 1...4. The Bits from 4...7 doesn't have any effect. IO-Link channels 1,2,3,4 use pin Input / Output 4,6,12,14 as IO-Link data lines.

The change of these bits will modify the I/O message size on the DeviceNet[™] bus and needs a modification on I/O parameters of the DeviceNet[™] PLC scannercard. When a channel is disabled, it will not appear in the I/O message.

Byte	Bit	Function	Description
	0	IO-Link channel 1	
	1	IO-Link channel 2	0 - Disabled
	2	IO-Link channel 3	1 - Enabled
0	3	IO-Link channel 4	
0	4	х	
	5	х	Dece not core
	6	х	Does not care
	7	Х	

Setting done This flag controls the module configuration saving. A change from False (0) to True (1) will trigger the configuration saving mechanism and will restart the module.

Byte	Transition	Description
0	0 -> 1	Save settings and restart the module
	1 -> 0	Do nothing

6.3. IO-Link specific settings

Port status

This shows the status of the selected IO-Link channel.

Configuration data is stored in the instances of IO-Link Channel Class.

Byte	Bit Function		Description	
	0	Connection established		
	1	Process Data length mismatch	0 - False 1 - True	
0	2	Validation failed		
0	3	Event occurred		
	4	х		
	5	х	Percent	
	6	х	Reserved	
	7	Х		

Port mode Values of the variable determine the number of bytes to be received from / transmitted to the IO-Link Device on the corresponding channel.

Byte	Value	Description
	0x04	Input 1 [byte]
	0x05	Input 2 [bytes]
	0x06	Input 4 [bytes]
	0x07	Input 6 [bytes]
	0x08	Input 8 [bytes]
	0x09	Input 10 [bytes]
	0x0A	Input 16 [bytes]
	0x0B	Input 24 [bytes]
	0x0C	Input 32 [bytes]
	0x0D	Output 1 [byte]
	0x0E	Output 2 [bytes]
	0x0F	Output 4 [bytes]
	0x10	Output 6 [bytes]
	0x11	Output 8 [bytes]
	0x12	Output 10 [bytes]
	0x13	Output 16 [bytes]
0	0x14	Output 24 [bytes]
	0x15	Output 32 [bytes]
	0x16	In/Out 1/1 [byte]
	0x17	In/Out 2/2 [bytes]
	0x18	In/Out 2/4 [bytes]
	0x19	In/Out 4/4 [bytes]
	0x1A	In/Out 4/2 [bytes]
	0x1B	In/Out 2/8 [bytes]
	0x1C	In/Out 4/8 [bytes]
	0x1D	In/Out 8/2 [bytes]
	0x1E	In/Out 8/4 [bytes]
	0x1F	In/Out 8/8 [bytes]
	0x20	In/Out 4/32 [bytes]
	0x21	In/Out 32/4 [bytes]
	0x22	In/Out 16/16 [bytes]
	0x23	In/Out 24/24 [bytes]
	0x24	In/Out 32/32 [bytes]

Data format	This setting	determines the byte	order of IO-Link data of th	e corresponding channel.
	Byte	Value	Description	٦
		0	Normal byte order	-
	0	1	Reversed byte order	
Validation type	This setting	determines the valid	ation of the IO-Link Device	e on the specific IO-Link channel.
	Byte	Value	Description	-
		0x00	No Check	-
	0	0x02	Identical	-
	Compatib Identical: Serialnum	le: Validation of Vendor Validation of Vendor ber.	dor ID and Device ID. ID, Device ID and	
Validation Vendor ID (ASCII HEX)	If the valida Vendor ID c	tion is enabled (Valion f the used IO-Link sla	dation type is Compatible ave device for a successfu	or Identical) you must set up the Il validation.
(,	ASCII HEX	means that the Vend	or ID must be converted to	o hexadecimal string format.
	When the Vendor ID of the device is (2 bytes) : <i>0x12 0xEF</i> The converted value is (4 bytes) : <i>0x31 0x32 0x45 0x46</i>			
	The Explicit of the string	message will contain	n the following where the	first byte (0x04) means the length
	Explicit message : 0x04 0x31 0x32 0x45 0x46			
Validation Device ID (ASCII HEX)	If the validation is enabled (Validation type is Compatible or Identical) you must set up the Device ID of the used IO-Link slave device for a successful validation.			
(ASCII HEX means that the Device ID must be converted to hexadecimal string format.			
	When the Device ID of the device is (3 bytes) : 0xA0 0xC1 0x2F The converted value is (6 bytes) : 0x41 0x30 0x43 0x31 0x32 0x46			
	The Explicit message will contain the following where the first byte (0x06) means the length of the string.			
	Explicit mes	sage : <i>0x06 0x41 0x</i>	30 0x43 0x31 0x32 0x46	
Validation SerNum (ASCII)	If the validation is enabled (when Validation type is Identical) you must set up the Serial Number of the used IO-Link slave device for a successful validation.			
()	When the Serial Number of the device for example is "ANYTHING" (11 bytes) the following must be send : 0x41 0x4E 0x59 0x54 0x48 0x49 0x4E 0x47 0x2E 0x2E 0x2E			
	The Explicit message will contain the following where the first byte (0x0B) means the length of the string.			
	Explicit message : 0x0B 0x41 0x4E 0x59 0x54 0x48 0x49 0x4E 0x47 0x2E 0x2E 0x2E			

The following example shows the correct settings of the validation data (VID, DID, SerNum) in the RSNetworx.

💐 BNI DNT	😤 BNI DNT-502-100-2001 🛛 💽 🔀					
General P	General Parameters 1/0 Data EDS File					
— 9	elec	t the narameter that you way	ot to configure and init	iate an		
a a	ctior	using the toolbar.	ne to configure and inte			
<mark>.</mark> <u>G</u> roup	s	😡 🔞 📶	➡ <u>M</u> onitor			
ID	P	Parameter	Current Value	~		
🖬 IO-I	.ink	Port #1				
- 303	e	CH1 Port Status	XXXX0000			
- 703	e	CH1 Event #1	000000			
- 704	•	CH1 Event #2	000000			
- 705	P	CH1 Event #3	000000			
- 304		CH1 Port Mode	In/Out 2/2 [bytes]	•		
- 305		CH1 Data Format	Normal byte order	-		
- 306		CH1 Validation Type	No Check	-		
- 307		CH1 Validation Vendor ID	12EF			
- 308		CH1 Validation Device ID	A0C12F			
- 309		CH1 Validation SerNum	ANYTHING			
ⁱ 310		CH1 Data Storage	No storage	-		
급 IO-I	IO-Link Port #2					
IO-I	🕞 IO-Link Port #3					
TO-Link Port #4						
	OK Mégse Alkalma <u>z</u> Súgó					

Data storage

Data storage parameter server settings for the specific IO-Link channel.

Byte Value		Description
	0x00	No storage
0	0x81	Upload enabled
0	0x82	Download enabled
	0x83	Up/Download enabled

Parameter server	No storage: Data management functions disabled, saved parameter data of an IO-Link device data will be deleted. Upload enabled: If the upload is enabled, the master starts a parameter data upload as soon as a device requests an upload (upload flag set) or if there is no data saved in the master port (e.g. after data has been deleted or before the first data upload) Enable download: As soon as the saved parameter data in the parameter server of the port is differentiated from the connected IO-Link device and no upload request from the IO-Link device is present, a download is carried out.
	Note After the upload of the parameter data, the vendor ID and device ID of the connected IO-Link device is also still saved until the data record is deleted (Data storage option "no storage" will delete data record an deactivate data storage) When the connected IO-Link device is started, a validation takes place. Therefore, only an IO-Link device of the same type can be used for the data management. To use an IO-Link device of a different type, the contents of the parameter server must be deleted. Only IO-Link devices from IO-Link Revision 1.1 can support the data storage.
Upload flag on the IO-Link device	The upload flag is needed to overwrite already saved data in the parameter server with new parameter data of the same IO-Link device To enable the upload flag of an IO-Link device, the data value 0x05 must be entered in the ISDU index 0x02, subindex 0. (To parameterize via ISDU, look at "ISDU Class" Parameterizing on Page 14)

6.4. ISDU specific	SDU (Indexed Service Data Unit) is used for acyclic acknowledged transmission of
settings	parameters. It can convey everything from basic device information (e.g. versions, type) to
1	much more advanced information (e.g. configuration, status).
-	There are two ISDU classes. One for large amount of data and the other for small amount of
(data exchange. The ISDU (ASCII) class can be accessed from the RSNetworx software
I	pecause the EDS file contains the class instances.

Status #(n) and
Status #(n)The Status #(n) attributes store the result of the ISDU request of the corresponding port. When
a new request has been sent the result will be displayed in the first attribute.(ASCII HEX)

In non-ASCII HEX format the status code will send in the following structure:

Byte	Function	Value	Description
0	Request	0x02	Write
		0x03	Read
4	Popult	0x00	No error
	Result	0x01	Error
2	Error codo		see in the
2	Endi code		IO-Link specification
3	Additional	see in the	
	code		IO-Link specification

For example, the stored request result bytes: 0x03 0x01 0x80 0x11 This means that there was a read request but the index not available.

When a Status attribute read out (GET_SINGLE_ATTR) happens, the Explicit message will contain the following: 0x30 0x01 0x80 0x11

In **ASCII HEX** format the status code will send in the following structure:

Byte	Function	Value (normal HEX)	Description
0	Pequest	0x02	Write
1	Request	0x03	Read
2	Popult	0x00	No error
3	Result	0x01	Error
4	Error codo		see in the
5	Elloi code		IO-Link specification
6	Additional		see in the
7	code		IO-Link specification

ASCII HEX means that the Event attribute will be send in hexadecimal string format.

For example, the stored request result bytes: 0x03 0x00 0x00 0x00 This means that there was a read request with success.

When a Status attribute read out (GET_SINGLE_ATTR) happens, the Explicit message will contain the following where the first byte (0x08) means the length of the string.

🕈 BNI	BNI DNT-502-100-2001-2				
Genera	General Parameters 1/0 Data EDS File				
	Select the parameter that you want to configure and initiate an action using the toolbar.				
	iroups	😼 🔞 🛛	🛨 🔿 Monitor 🛛 🍇 🐴		
ID	e	Parameter	Current Value		
	IO-Link I	SDU #1			
	IO-Link I	SDU #2			
9	IO-Link I	SDU #3			
-	511 🔒	CH3 Status #1	03000000		
-	512 🔒	CH3 Status #2	02000000		
-	513 🔒	CH3 Status #3	03000000		
	514	CH3 Action	Read 🗾		
-	515	CH3 Index	0		
-	516	CH3 SubIndex	0		
-	517	CH3 Data Length	16		
-	518	CH3 Data	9832321B110082037		
i	519	CH3 Send Request	FALSE 🔹		
🛅 IO-Link ISDU #4					
Monitored Parameters					
		OK Mégse	Alkalmaz Súgó		

Device

The following image shows how the RSNetworx display the ASCII HEX example above.

This setting determines the request operation.

Byte	Value	Description	
0	0x02	Write	
0	0x03	Read	
Byte	Value	Description	
Byte 0	Value 0x0000 ~ 0xFFFF	Description	

Index

SubIndex	Byte	Value	Description
	0	0x00 ~ 0xFF (0 ~ 255)	Look at the user manual of the connected IO-Link Device

1

Data length

This setting determines the length of the ISDU message.

Byte	Value	Description
0	0 ~ 232	by non-ASCII HEX
	5 262	object
Ū	0 ~ 32	by ASCII HEX object

The Data length is described in the user manual of the connected IO-Link Device.

Data and Data (ASCII HEX) These attributes are used to read and write ISDU parameter data. Before you do a write request, you must set the data length and this attribute. After a read request this attribute will contain the incoming bytes.

For parameter data look at the user manual of the connected IO-Link device.

By the **non-ASCII HEX** object class the whole ISDU area can be accessed, but the **ASCII HEX** has a limited size.

The following image shows how the RSNetworx display a success read request. In the example the Index 0 had been read out. The RSNetworx use the ASCII HEX object class.

🂐 BNI DNI	🖥 BNI DNT-502-100-Z001-2 🛛 🕐 🗙					
General F	General Parameters 1/0 Data EDS File					
	elect the parameter that	you want to configure and initiate an				
	ction using the toolbar.	you want to configure and initiate an				
✓ <u>G</u> roup	s 😽 🕅 🗚	I 💽 🔿 Monitor 🛛 🍇 🐴				
ID	🔒 Parameter	Current Value				
IO-	ink ISDU #1					
IO-	ink ISDU #2					
IO-	ink ISDU #3					
- 511	🔒 CH3 Status #1	03000000				
- 512	: 🔒 CH3 Status #2	02000000				
- 513	🗧 🖻 CH3 Status #3	0300000				
- 514	CH3 Action	Read 🔹				
- 515	CH3 Index	0				
- 516	CH3 SubIndex	0				
- 517	CH3 Data Lengt	n 16				
- 518	CH3 Data	9832321B110082037				
i 519	CH3 Send Reque	est FALSE 🔽				
IO-	💼 IO-Link ISDU #4					
Ca Mor	Monitored Parameters					
	OK M	légse Alkalma <u>z</u> Súgó				

Send request

It controls the IO-Link ISDU data exchange. A change from False (0) to True (1) will trigger the ISDU sending mechanism.

Byte	Transition	Description
0	0 -> 1	Send ISDU request
0	1 -> 0	Do nothing

6.5. Events IO-Link events allow a standard or vendor specific information about any alarms or informational messages to be delivered.

Event #(n) (ASCII HEX) The Event #(n) attributes store the IO-Link events of the corresponding port. When an event is received from the slave the "Event occurred" flag will be set. The first attribute stores the last event. If an attribute has been read the "Event occurred" flag will be cleared.

Byte	Function	Value (normal HEX)	Description	
		0x00	Reserved	
0	Mode	0x40	Event single shot	
		0x80	Event disappears	
		0xC0	Event appears	
1	Event code		see in the	
2	Event code	0x0000 ~ 0xFFFF	IO-Link specification	

ASCII HEX means that the Event attribute will be send in hexadecimal string format.

For example, the stored event bytes: 0x80 0x00 0x1A (First byte Mode, last two is the Event code)

When an Event attribute read out (GET_SINGLE_ATTR) happens, the Explicit message will contain the following where the first byte (0x06) means the length of the string.

Explicit message : 0x06 0x38 0x30 0x30 0x30 0x31 0x41

The following image shows how the RSNetworx display the example above.

🖗 BNI DNT-502-100-2001-2 🛛 🛛 🛛 🖓 🔀				
General Parameters I/O Data EDS File				
Select the parameter that you want to configure and initiate and action using the toolbar	n			
	_			
🔽 🖸 Groups 😼 💯 🖾 🛨 🚽 🖶 Monitor 🍓	P			
ID 🖻 Parameter Current Value	^			
🔓 IO-Link Port #3				
🕞 IO-Link Port #4				
- 603 🔒 CH4 Port Status XXXX1001 -				
- 1003 🖻 CH4 Event #1 80001A				
- 1004 🖻 CH4 Event #2 800010				
- 1005 🖻 CH4 Event #3 000000				
- 604 CH4 Port Mode In/Out 16/16 [bytes] 💌				
- 605 CH4 Data Format Normal byte order 💌				
- 606 CH4 Validation Type No Check 💽				
- 607 CH4 Validation Vendo 0000				
- 608 CH4 Validation Devic 000000				
- 609 CH4 Validation SerNum				
🛄 🛄 610 CH4 Data Storage No storage 💌				
IO-Link ISDU #1				
TO-Link ISDIL #2				
OK Mégse Alkalma <u>z</u> Sú	igó			

6.6. Standard I/O The standard Input / Output settings are stored in this class. The writeable attributes are specific independent from the "Settings Done" flag. The applied values will be saved in the module settings immediately.

Input status The Input status shows the state of the standard Inputs. Bit mapping corresponds to the pin number.

Byte		Bits		Description
0	7		0	Pin(n) value :
1	15		8	0 - LOW 1 - High

Output status The Output status shows the state of the standard Outputs. Bit mapping corresponds to the pin number.

Byte		Bits		Description
0	7		0	Pin(n) value :
1	15		8	0 - Low 1 - High

Overload status The Overload status shows the state of the standard Outputs. Bit mapping corresponds to the pin number.

Byte	Bits			Description
0	7		0	Pin(n) value :
1	15		8	0 - Normal 1 - Overloaded

Short circuit The Short circuit status shows the state of the port supply. Bit mapping corresponds to the pin status number.

Byte	Bits			Description
0	7		0	Bit(n) value : 0 – No short circuit 1 - Short circuit on Port (n) (Pin1 to Pin3)

Aux power status

This shows the supply voltages level.

Byte	Bit	Function	Description
	0	US – Low Voltage	0 - False
	1	UA – Low Voltage	1 - True
	2	Х	
0	3	Х	
	4	Х	Doos not caro
	5	х	Does not care
	6	Х	
	7	Х	

Output reset status

The reset value is used for pin reset when it is in overloaded state. The bitmapping corresponds to the pin number.

Byte	Bits			Description
0	7		0	Pin(n) value :
1	15		8	0 -> 1 (reset pin) 1 -> 0 (do nothing)

Fault state (00 ~ 15)

These settings will be used when the link between the DeviceNet[™] master and the module lost. In this case the pins will be set into the selected state. Except that pins where the IO-Link function is enabled.

Byte	Value	Description
	0x00	Output Off
0	0x01	Output On
	0x02	Hold Last State

Idle state
(00 ~ 15)These settings will be used when there is no I/O message (control message) from the
DeviceNet[™] master. In this case the pins will be set into the selected state. Except that pins
where the IO-Link function is enabled.

Byte	Value	Description
	0x00	Output Off
0	0x01	Output On
	0x02	Hold Last State

6.7. EDS file The EDS (Electronic Data Sheet) contains device information about the communication parameters of the device and the available objects. During commissioning, it is used together with a configuration tool.

6.8. Baud rate, Node Adress
Baud rate and Node Adress settings are both settable on the interactive Display. This two datas are saved independently of the other configuration data. There is no need to set the "Settings Done" attribute of the DeviceNet[™] Gateway Class, changes are stored immediately.

In case the new value is different from the old one, change is displayed on the status LEDs. Any change will only be used after the next start-up.

7.1. Port configuration

7.2. I/O data details

bytes

Fixed produced

This section describes the meaning of the bit fields of the I/O messages.

Name	Bit	Bit name	Description
	0	Input 00	
	1	Input 01	
loout	2	Input 02	
Statua	3	Input 03	
Status (Low Puto)	4	Input 04	
(LOW Byle)	5	Input 05	
	6	Input 06	
	7	Input 07	1: High
	8	Input 08	0: Low
	9	Input 09	
line in state	10	Input 10	
Input	11	Input 11	
(High Byto)	12	Input 12	
(Flight Byte)	13	Input 13	
	14	Input 14	
	15	Input 15	

Name	Bit	Bit name	Description
	0	Pin 00	
	1	Pin 01	
Overlead	2	Pin 02	
Overload	3	Pin 03	
(Low Puto)	4	Pin 04	
(LOW Byle)	5	Pin 05	
	6	Pin 06	Pin (n) overloaded
	7	Pin 07	
	8	Pin 08	
	9	Pin 09	
	10	Pin 10	
Overload	11	Pin 11	
Status (Lligh Buto)	12	Pin 12	
(Flight Byte)	13	Pin 13	
	14	Pin 14	
	15	Pin 15	

Name	Bit	Bit name	Description	
	0	Port 0		
	1	Port 1	4	
Short	2	Port 2	Short circuit on Port (n)	
Circuit	3	Port 3		
Status	4	Port 4	(Pin1 to Pin3)	
	5 6	Poil 5 Port 6	-	
	7	Port 7	-	
	0	US	US voltage is low	
	1	UA	UA voltage is low	
	2	0	Ŭ	
Aux Power	3	0		
Status	4	0	Not used	
	5	0	(Reserved)	
	6	0	-	
	1	0		
Name	Bit	Bit name	Description	
	0	IOL CH1 CE		
	1	IOL CH2 CE	Connection	
	2	IOL CH3 CE	established on	
IO-Link	3	IOL CH4 CE		
(Low Byte)	4	IOL CH1 PDL		
	5	IOL CH2 PDL	PD length mismatch	
	6	IOL CH3 PDL	on IOL CH (n)	
	7	IOL CH4 PDL		
	8	IOL CH1 VS		
	9	IOL CH2 VS	Validation failed on	
	10	IOL CH3 VS	IOL CH (n)	
IO-Link Status	11	IOL CH4 VS		
(High Byte)	12	IOL CH1 EO		
	13	IOL CH2 EO	Event occurred on	
	14	IOL CH3 EO	IOL CH (n)	
	15	IOL CH4 EO		

Fixed consumed bytes

Name	Bit	Bit name	Description
	0	Output 00	•
	1	Output 01	
Q ()	2	Output 02	
Output	3	Output 03	
State	4	Output 04	
(LOW Byte)	5	Output 05	
	6	Output 06	
	7	Output 07	(Pin functional as Output)
	8	Output 08	0:1 out
	9	Output 09	(Pin functional as Input)
Output	10	Output 10	(i in functional as input)
Output	11	Output 11	
(Ligh Byto)	12	Output 12	
(Flight Byte)	13	Output 13	
	14	Output 14	
	15	Output 15	
Name	Bit	Bit name	Description
	0	Output 00	
	1	Output 01	
Output	2	Output 02	
Reset	3	Output 03	
	4	Output 04	
(LOW Dyte)	5	Output 05	
	6	Output 06	
	7	Output 07	0->1: Reset
	8	Output 08	1->0: Nothing
	9	Output 09	
Output	10	Output 10	
Reset	11	Output 11	
(High Byte)	12	Output 12	
(g.: _)(o)	13	Output 13	
	14	Output 14	
	15	Output 15	
••	D		
Name	Bit	Bit name	Description
	0		LED control
	1 2	Lock	Lock display
Display	2	LOCK	LOCK display
Display	3	*	
	4 5	X	Not used
	5	*	(Reserved)
	7	X	
	1	*	
	1	X	
	ן ר	*	
	2	X	Naturad
Empty	S /	Á V	(Reserved)
	4 5	λ ν	(IVESEIVEU)
	6	А У	
	7	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	'	^	

IO-Link bytes

Name	Byte	Byte name	Description	
	0	Input Byte (0)		
IO-Link CH(x)			Normal byte order	
input Dytes	N-1	Input Byte (N-1)		
Name	Byte	Byte name	Description	
	0	Output Byte (0)		
IO-Link CH(x)			Normal byte order	
Output Dytes	M-1	Output Byte (M-1)		
Name	Byte	Byte name	Description	
	- ,			
	0	Input Byte (N-1)		
IO-Link CH(x)	0	Input Byte (N-1)	Reversed byte	
IO-Link CH(x) Input Bytes	0 N-1	Input Byte (N-1) Input Byte (0)	Reversed byte order	
IO-Link CH(x) Input Bytes	0 N-1	Input Byte (N-1) Input Byte (0)	Reversed byte order	
IO-Link CH(x) Input Bytes Name	0 N-1 Byte	Input Byte (N-1) Input Byte (0) Byte name	Reversed byte order Description	
IO-Link CH(x) Input Bytes Name	0 N-1 Byte 0	Input Byte (N-1) Input Byte (0) Byte name Output Byte (M-1)	Reversed byte order Description	
IO-Link CH(x) Input Bytes Name IO-Link CH(x) Output Bytes	0 N-1 Byte 0 	Input Byte (N-1) Input Byte (0) Byte name Output Byte (M-1) 	Reversed byte order Description Reversed byte order	

8 Technical data

8.1. Dimensions

50mA @ 24V

8.2.	Mechanical data	Housing material	Die-case zinc, matte nickel plated
		Enclosure rating per IEC 60529	IP 67 (only when plugged-in and threaded-in)
		Supply voltage	7/8" 4-pin male
		Input ports / Output ports	M12, A coded (8 x female)
		Dimensions (W x H x D in mm)	68 x 224 x 37.9
		Mounting type	2-hole screw mount
		Ground strap attachment	M4
		Weight	Approx. 660 g
8.3.	Operating	Operating temperature T _a	-5 °C 70 °C
	conditions	Storage temperature	-25 C 70 °C
8.4.	Electrical data	Supply voltage	1830.2 V DC, per EN 61131-2
		Ripple	<1%
		Supply input current without load (max.)	150mA @ 24V

DeviceNet[™] bus input current (max.)

8 **Technical data**

8.5. DeviceNe

8.5. DeviceNet [™] port	Data transmission rate	125 - 500 kBaud
8.6. DeviceNet™	Data transmission rate	125 kBaud
default settings	Node Address	03
Γ	Produced I/O size	8 Bytes
	Consumed I/O size	6 Bytes

8.7. Function indicators

	Statu Port/Pin LE status of input/output	s LED D: /IOL		
Status LED	LED		Status	Function
	US	Gre	en	Input voltage OK
		Red		Low input voltage (<18V)
	UA	Gre	en	Output voltage OK
		Red	Low output voltage (<18V)	
		Gre	en en fleching	No error Wrong or no configuration
	Mod	Green flashing		
	MOU	Red Red floobing		Pacoverable fault/Settings changed
		Red	l/Green flashing	
		Gre	en	Connection established
		Gre	en flashing	Connection in progress
	Net	Red	l	Link failure
	Net	Red	l flashing	Connection timeout
		Red	l/Green flashing	Communication fault
LED indicators input ports	Each M12 p the configur	ort (di ation c	gital input/output, or operating state	IO-Link) is assigned two Bi-colour LEDs which indicate s.
	LED		Function LED Pin 2 / Pin 4	
	Off		Input signal = 0	
Orange		Input signal = 1		Ne ante airea vite / Overale and
	Red		input signal = S	short circuit / Overload
LED indicators			E 1	unction LED Bin 2 / Bin 4
output ports				
	Orange		Output signal = 1	
	Red		Output signal = Short circuit / Overload	
LED indicators IO-	LED			Function LED Pin 4
Link channels	Green		IO-Link connection established	
	Green flashing		No IO-Link communication	
	Red		Short circuit	
	Red flashing		Validation failed	b b b b b b b b b b b b b b b b b b b
	Off		IO-Link port not	t enabled

9.1. Type code		BNI DNT-50x-100-Z001			
	Balluff Network Interface				
	DeviceNet™				
	Functions				
	Variants 100 = Display version				
	Mechanical configuration Z001 = material: die-cast zinc housing Bus In: 1x M12 x 1 external thread Bus Out: 1x M12 x 1 internal thread Power: 7/8" external thread I/O Ports: 8 x M12 x 1 internal thread				
9.2. Ordering	Туре	Ordering code			
information	BNI DNT-502-100-Z001	BNI005A			
Scope of delivery	The delivery includes the following componen	ts			
	DeviceNet [™] IO-Link Block				
	 Blind plugs 4x M12 				

- Blind plugs 4x M12 Ground strap Screw M4x6
- •
- Lock washer •
- 20 labels •

Balluff Network Interface DeviceNet[™] / BNI DNT-502-100-Z001

Note

www.balluff.com

Balluff GmbH Schurwaldstrasse 9 73765 Neuhausen a.d.F. Germany Tel. +49 7158 173-0 Fax +49 7158 5010 balluff@balluff.de