## Info card

Steel only detection sensors
i
This info card serves as a supplement to the main position sensors catalogue and to the individual data sheets. For further information and contact addresses please visit www.ifm.com.

## Functions and features

While in use the products are exposed to influences which may have an effect on function, life, quality and reliability of the product.
It is the customer's responsibility to ensure that the products are suitable for the intended application. This applies in particular to applications in hazardous areas and with adverse environmental influence such as pressure, chemicals, temperature fluctuations, moisture and radiation as well as mechanical stress, especially if the products are not installed properly.
Using the products in applications where the safety of people depends on the function of the product is not permitted. If these instructions are not adhered to, death or severe injury may occur.

## Operating principle of a steel only detection sensor

Steel only detection sensors detect changes of magnetic fields that are caused by ferromagnetic materials
(1) connection
(2) housing
(3) shielding plate
(4) magnet
(5) active zone
(6) sensor chip
(7) target made of ferromagnetic material


## Important information

| Active zone | Area above the sensing face in which the sensor reacts to the approach of <br> ferromagnetic material. |
| :--- | :--- |
| Number of switch-on operations | Counts the number of switch-on operations, starts again at 0 when the maximum |

 value has been reached

Number of switching operations $\quad$| Counts the number of switching operations, starts again at 0 when the maximum |
| :--- |
| value has been reached |

| Output function <br> (can be configured) | Normally open: | Object within the active zone <br> $>$ output ssitched. <br> Object within the active zone <br> $>$ |
| :--- | :--- | :--- |
|  | Normally closed: |  |
|  | Poutput blocked. |  |
|  | Negative switching: switching: | positive output signal (to L-). <br> negative output signal (to L+). |


| Switch-off delay | Time during which the output remains switched after the target has left the active <br> zone. |
| :--- | :--- |
| (can be configured) | DC units with protection class III: 60 V DC |
| Rated insulation voltage | For short-circuit-proof units: 100 A |
| Rated short-circuit current | The time the sensor needs to be ready for operation after application of the operating <br> voltage (in the millisecond range). |
| Rated impulse withstand voltage | DC units with protection class III: $60 \mathrm{~V} \mathrm{AC:} 0.8 \mathrm{kV}$ (气 overvoltage category II) |


| Operating voltage | Voltage range in which the sensor operates reliably. A stabilised and smoothed direct <br> voltage should be used! Take into account residual ripple! |
| :--- | :--- |
| Operating hours | Time during which the operating voltage is applied to the sensor. Remains when the <br> maximum value has been reached. |
| Switch-on delay <br> (can be configured) | Time until the output is switched after the target has reached the active zone. |
| Retting range | Range in which a switch point can be set. |
| Utilisation category | Difference between switch-on and switch-off point. |
| Hysteresis | ifm sensors which are protected against excessive current by means of a pulsed <br> short-circuit protection. The inrush current of incandescent lamps, electronic relays <br> and low resistance loads may cause this protection to cut in and turn the sensor off! |
| Shor-circuit protection UK |  |

## Info card

Steel only detection sensors

## Sensing range (referred to the standard target)



Nominal sensing range $S_{n}$
Real sensing range $\mathrm{S}_{\mathrm{r}}$
Useful sensing range $\mathrm{S}_{\mathrm{u}}$
Reliable sensing range $=$ operating distance S a

Safe switch-off distance
= characteristic value of the unit
$=$ individual deviation at room temperature between $90 \%$ and $110 \%$ of $S_{n}$
$=$ switch point drift between $90 \%\left(\mathrm{~S}_{\text {min }}=\mathrm{Sa}_{\mathrm{a}}\right)$ and $110 \%\left(\mathrm{~S}_{\mathrm{u}_{\text {max }}}\right)$ of S
$=$ reliably switched between $0 \%$ and $81 \%$ of $S_{n}$
$=S_{u_{\max }}+$ max. hysteresis $=143 \%$ of $S_{n}$
(i) Steel only detection sensors only respond to ferromagnetic metals.

(1) Typical switch-on curve (for slow approach)
(2) Typical switch-off curve (for slow approach)
(3) Poor repeatability
(4) Good repeatability

Good repeatability of the switch point means:
The closer the target is positioned to the sensing face, the better.

General recommendation:
$a=10 \%$ of the nominal sensing range

(1) Distance to the background
(2) Recommended target distance
(3) Recommended degree of coverage of the sensing face
(4) Recommended target size

Installation instructions rectangular designs
flush:


## Info card

Steel only detection sensors

## Electrical connection

The unit must be connected by a qualified electrician.
(1) negative switching
(2) positive switching


| Configuration of cables and connectors | Colours: BK: black, BN: brown, BU: blue, WH: white Standard configuration for 3-wire DC: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Cable | Terminal chamber | US-100 plug |
|  | L+ |  | BN | 1/3 | pin 1 / BN |
|  | L- |  | BU | 2/4 | pin 3/BU |
|  | Output | $I$ | BK | X | $\begin{aligned} & \hline \text { pin } 2 / \mathrm{WH} \\ & \operatorname{pin} 4 / \mathrm{BK} \\ & \hline \end{aligned}$ |

## Pin configuration of the

US-100 connections (view on
the plug
on the unit)

$$
\begin{array}{ll}
\text { Pin 4: BK } \\
\text { Pin 1: BN }
\end{array}=\begin{aligned}
& \text { Pin 3: } \mathrm{BU} \\
& \text { Pin 2:WH }
\end{aligned}
$$

For the cable and the pin configuration as well as the unit data of special versions please refer to the wiring diagrams in our main catalogue for position sensors.

## IO-Link diagnostic data

Process variable range over-run:
Warning (OL)
Warning (UL)
Process variable range under-run: Error message

## Switch point definition IO-Link

## Single point mode



## Window mode



[^0]Hyst: hysteresis
SSC: Switching Signal Channel

## Info card

Steel only detection sensors

## Unit parameters IO-Link

| Parameters | Value | Explanation | Factory setting |
| :---: | :---: | :---: | :---: |
| P-n | PnP, nPn | Setting of the output polarity of the switching outputs. | PnP |
| SSCx <br> Param. SP1 | 20... 600 | Manual setting of the switch point SP1: <br> Single point mode: respective switch point | $\begin{aligned} & \text { SSC1: } 500 \\ & \text { SSC2: } 500 \end{aligned}$ |
|  |  | Window mode: Setting of the switch-on point SP1 (SP1 > SP2) |  |
| SSCx <br> Param. SP2 | 20... 600 | Manual setting of the switch point SP2: <br> Can only be used in the Window mode:Setting of the switch-off point SP2 (SP2 < SP1) | $\begin{aligned} & \text { SSC1: } 200 \\ & \text { SSC2: } 200 \end{aligned}$ |
| SSCx Config. Logic | High active | Setting of the switch-point logic / logic for detected object: normally open (NO) | High active |
|  | Low active | normally closed (NC) |  |
| SSCx Config. Mode | Single Point | Setting of the switch point mode: <br> Sensor switches at the set point (SP1). | Single Point |
|  | Window | Sensor switches in a selected range between SP1 and SP2 (SP2 $\leq x \leq S P 1$ ). |  |
| SSCx Config. Hyst | 10... 200 | Setting of the hysteresis. | 40 |
| SSCx <br> switch-on delay | 0...60,000 ms | Time by which the switching on of the sensor is delayed. | 0 |
| SSCx <br> switch-off delay | 0...60,000 ms | Time by which the switching off of the sensor is delayed. | 0 |
| SSCx counter | 0... 2147483647 | Number of switching operations.Reset via IO-Link | 0 |
| SSCx counter switching threshold | 0... 2147483647 | Manual setting of the switching threshold for the SSCx switching operations. | 0 |
| TI Select | $\begin{aligned} & \text { SSC1 } \\ & \text { SSC2 } \end{aligned}$ | Selection which switching channel is to be set. | SSC1 |

SSCx = SSC1 or SSC2

Teach options

| Parameters | Explanation |
| :--- | :--- |
| Teach SP1 | Teaching the current position of the object to be detected as switch point. The switch point is <br> selected just before the teach point. |
| Teach SP1 TP1 | Teach sequence to set switch point SP1. <br> First part (TP1): teach on object. <br> Both parts of the teach sequence for TP1 and TP2 have to be executed in order to place switch <br> point SP1 between the object and the background. |
| Teach SP1 TP2 | Teach sequence to set switch point SP1. <br> Second part (TP2): teach on background. Both parts of the teach sequence for TP1 and TP2 <br> have to be carried out. |
| Teach SP1 start | Starts a teach sequence.The switch point is determined on the basis of the damping cycles <br> recorded until the teach sequence has been stopped. |
| Teach SP1 stop | Stops the teach sequence. |
| Teach background | Teaching on the background only, the switch point is defined just before the background.This <br> setting is an alternative to teaching SP1 if no object is available. |
| Teach SP1 position | Teaching the current position of the object to be detected as switch point (SP1). <br> The teach point corresponds to the switch point. |
| Teach SP2 position | Can only be used in the Window mode. <br> Teaching the current position of the object to be detected as switch point (SP2). <br> The teach point corresponds to the switch point. |
| Cancel teaching | Cancels the current teaching process. |
| Teaching with the <br> next switch-on | Starts teaching (sensor is damped min. 3 times) after restart of the sensor. |


[^0]:    SP: switch poin
    TP: teach point

