High-Performance Distance Sensor

P1KY014

LASER

Part Number

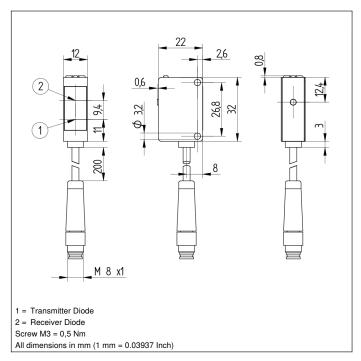
- 2 mutually independent switching outputs
- Interference-free towards gloss in the background with WinTec
- Miniature design
- No mutual interference with WinTec
- Reliable in case of glossy objects with WinTec
- Secure detection of black objects also in extremely inclined positions with WinTec

These miniature sensors determine distance between the sensor and the object by means of transit time measurement.

wenglor's interference-free technology (WinTec) is revolutionizing sensor technology: it prevents numerous sensors arranged directly opposite or next to each other from interfering with one another. The sensors reach a very high switching frequency and use laser class 1, which is safe for the human eye.

PNG//smart WinTec

Technical Data

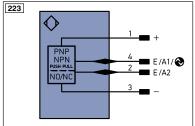

Technical Data	
Optical Data	
Working Range	01000 mm
Adjustable Range	1001000 mm
Switching Hysteresis	< 20 mm
Light Source	Laser (red)
Wavelength	680 nm
Service Life (T = +25 °C)	100000 h
Laser Class (EN 60825-1)	1
Beam Divergence	< 16 mrad
Max. Ambient Light	10000 Lux
Light Spot Diameter	see Table 1
Triple Dot Laser	yes
Electrical Data	
Supply Voltage	1030 V DC
Supply Voltage with IO-Link	1830 V DC
Current Consumption (Ub = 24 V)	< 30 mA
Switching Frequency	500 Hz
Response Time	1 ms
Temperature Drift (-10 °C < Tu ≤ 50 °C)	< 2 %
Temperature Drift (-40 °C < Tu ≤ 50 °C)	< 3 %
Temperature Range	-4050 °C
Number of Switching Outputs	2
Switching Output Voltage Drop	< 2,5 V
Switching Output/Switching Current	100 mA
Short Circuit Protection	yes
Reverse Polarity Protection	yes
Overload Protection	yes
Interface	IO-Link V1.1
Protection Class	III
FDA Accession Number	1620293-001
Mechanical Data	
Setting Method	Teach-In
Housing Material	Plastic
Optic Cover	PMMA
Degree of Protection	IP67
Connection	M8 × 1; 4-pin
Cable Length	200 mm
Safety-relevant Data	
MTTFd (EN ISO 13849-1)	1021,76 a
NPN NO	•
IO-Link	
Connection Diagram No.	223
Control Panel No.	A23
Suitable Connection Equipment No.	7
Suitable Mounting Technology No.	400

Complementary Products

IO-Link Master

Software

Ctrl. Panel



06 = Teach Button

5a = Switching Status Display, O1

68 = Supply Voltage Indicator

6a = Switching Status Display, O2

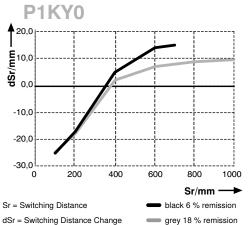

_egen	id		PT	Platinum measuring resistor	ENARS422	Encoder A/Ā (TTL)
+	Supply Voltage +		nc	not connected	ENBRS422	Encoder B/B (TTL)
-	Supply Voltage 0 V		U	Test Input	ENA	Encoder A
~	Supply Voltage (AC Voltage)		Ū	Test Input inverted	ENB	Encoder B
Α	Switching Output (NO)	W	Trigger Input	Amin	Digital output MIN
A	Switching Output ((NC)	W -	Ground for the Trigger Input	Амах	Digital output MAX
V	Contamination/Error Output (NO)	0	Analog Output	Аок	Digital output OK
V	Contamination/Error Output ((NC)	0-	Ground for the Analog Output	SY In	Synchronization In
E	Input (analog or digital)		BZ	Block Discharge	SY OUT	Synchronization OUT
Т	Teach Input		Awv	Valve Output	OLT	Brightness output
Z	Time Delay (activation)		а	Valve Control Output +	М	Maintenance
S	Shielding		b	Valve Control Output 0 V	rsv	reserved
RxD	Interface Receive Path		SY	Synchronization	Wire Co	lors according to DIN IEC 757
TxD	Interface Send Path		SY-	Ground for the Synchronization	BK	Black
RDY	Ready		E+	Receiver-Line	BN	Brown
GND	Ground		S+	Emitter-Line	RD	Red
CL	Clock		±	Grounding	OG	Orange
E/A	Output/Input programmable		SnR	Switching Distance Reduction	YE	Yellow
②	IO-Link		Rx+/-	Ethernet Receive Path	GN	Green
PoE	Power over Ethernet		Tx+/-	Ethernet Send Path	BU	Blue
IN	Safety Input		Bus	Interfaces-Bus A(+)/B(-)	VT	Violet
OSSD	Safety Output		La	Emitted Light disengageable	GY	Grey
Signal			Mag	Magnet activation	WH	White
BI_D+/-	Ethernet Gigabit bidirect. data I	line (A-D)	RES	Input confirmation		Pink
	Encoder 0-pulse 0-0 (TTL)	, ,	EDM	Contactor Monitoring	GNYE	Green/Yellow

Table 1

Working Distance	100 mm	500 mm	1000 mm
Light Spot Diameter	4 mm	7 mm	15 mm

Switching Distance Deviation

Typical characteristic curve based on white, 90 % remission

