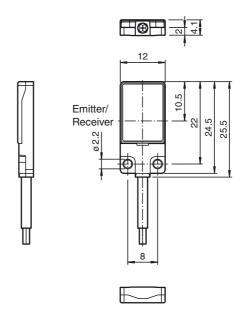
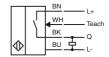


Model Number


OBE500-R2F-SE2-L

Laser thru-beam sensor with 2 m fixed cable

Features


- Very flat design for direct mounting without mounting bracket
- DuraBeam Laser Sensors durable and employable like an LED
- TEACH-IN
- Detection of partially transparent objects by teach-in
- Detection of small parts or flat objects from 0.25 mm

Dimensions

Electrical connection

Technical data System components Emitter **General specifications** Effective detection range Threshold detection range Light source Light type Laser nominal ratings

OBE500-R2F-S-L OBE500-R2F-E2-L

0 500 mm

LASER LIGHT

modulated visible red light, 680 nm

LASER LIGHT, DO NOT STARE INTO BEAM

700 mm

Laser class 680 nm Wave length Beam divergence > 5 mrad Pulse length approx. 3 µs Repetition rate approx. 16.6 kHz

max. pulse energy 8 nJ Angle deviation approx. 0.5 °

typ. starts from 0.5 mm; typ. from 0.25 mm (after teach-in) Object size approx. 4 mm at a distance of 500 mm

Diameter of the light spot Angle of divergence approx. 1

Optical face frontal

EN 60947-5-2: 25000 Lux Ambient light limit

Functional safety related parameters

 $MTTF_d$ 806 a Mission Time (T_M) 20 a 0 % Diagnostic Coverage (DC)

Indicators/operating means

Operation indicator LED green, statically lit Power on , short-circuit : LED green

flashing (approx. 4 Hz)

Function indicator Receiver: LED yellow, lights up when light beam is free, flashes when falling short of the stability control; OFF when light beam

is interrupted

Electrical specifications

12 ... 24 V Operating voltage U_B Emitter: ≤ 10 mA No-load supply current I₀ Receiver: ≤ 8 mA

Protection class

Input

Test input Test of switching function at 0 V

Switching threshold Teach-In input

Output

Switching type NO contact / dark on

Signal output 1 PNP output, short-circuit protected, reverse polarity protected,

open collector

max. 30 V DC Switching voltage

Switching current max. 50 mA, resistive load

Voltage drop U_{d} \leq 1.5 V DC Switching frequency approx. 2 kHz $250\,\mu\text{s}$ Response time

Conformity

Product standard EN 60947-5-2 EN 60825-1:2007 Laser safety

Ambient conditions

Ambient temperature -10 ... 60 °C (14 ... 140 °F) -20 ... 70 °C (-4 ... 158 °F) Storage temperature

Mechanical specifications

Housing width 12 mm Housing height 25.5 mm Housing depth 4.1 mm Degree of protection IP67 Connection 2 m fixed cable

Material

Cable length

Housing PC (Polycarbonate) and Stainless steel **PMMA**

Optical face **PUR** Cable

approx. 20 g Per sensor 0.25 Nm Tightening torque, fastening screws

Approvals and certificates

E87056, cULus Recognized, Class 2 Power Source UL approval CCC approval CCC approval / marking not required for products rated ≤36 V

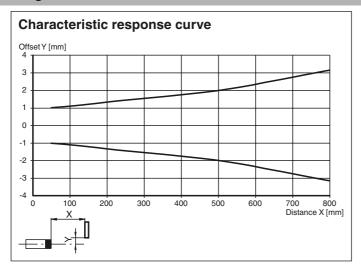
Laserlabel

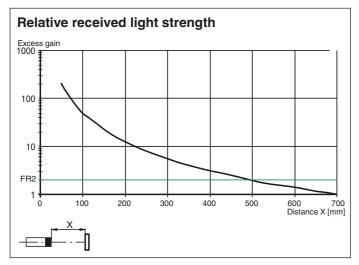
CLASS 1 LASER PRODUCT

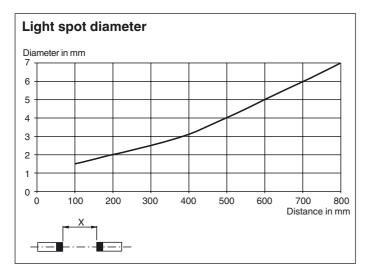
IEC 60825-1: 2007 certified. Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50. dated June 24, 2007

CLASS 1 LASER PRODUCT

IEC 60825-1: 2007 certified. Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007


Other suitable accessories can be found at www.pepperl-fuchs.com


Date of issue: 2019-10-29 280473_eng.xml


FDA approval

IEC 60825-1:2007 Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007

Curves/Diagrams

Teach-In Methods


The thru-beam sensor enables the switching points to be taught in for optimum adaptation to specific applications. This eliminates the need for additional components such as apertures.

The sensitivity of the thru-beam sensor can be adjusted using three Teach-in methods:

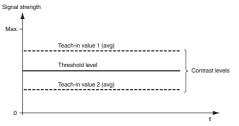
Position Teach

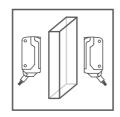
When using this Teach-in method, the following settings are made on the thru-beam sensor:

- The gain is set to an optimum value
- The signal threshold is set to a minimum

Recommended application:

This method enables minuscule particles in the beam path to be detected, and provides exceptional positioning accuracy.

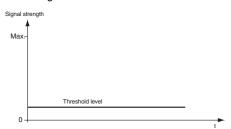

Make sure that there are no objects in the beam path and that the sensor is connected to the power supply.

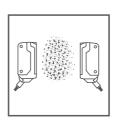

- Connect the white cable on the receiver (WH/IN) to the blue cable (BU/0 V) on the receiver.
 The green and yellow LED indicators flash simultaneously at 2.5 Hz
- Disconnect the white cable on the receiver (WH/IN) from the blue cable (BU/0 V) on the receiver.
 The green and yellow LED indicators flash alternately at 2.5 Hz
- 3. The end of the Teach-in process is indicated when the green LED indicator lights up static and yellow LED blinks.

Two-Point Teach-In

When using this Teach-in method, the following settings are made on the thru-beam sensor:

- · The gain is set to an optimum value
- · The signal threshold is set in the center between the two taught signal values




- 1. Make sure that there are no objects in the beam path and that the sensor is connected to the power supply.
- Connect the white cable on the receiver (WH/IN) to the blue cable (BU/0 V) on the receiver.
 The green and yellow LED indicators flash simultaneously at 2.5 Hz
- 3. Position the object in the beam path.
- 4. Disconnect the white cable on the receiver (WH/IN) from the blue cable (BU/0 V) on the receiver. The green and yellow LED indicators flash alternately at 2.5 Hz
- 5. The end of the Teach-in process is indicated when the green LED indicator lights up static.

Maximum Teach-In

When using this Teach-in method, the following settings are made on the thru-beam sensor:

- · The gain is set to a maximum
- · The signal threshold is set to a minimum

Recommended application:

Enables an object to be detected with a high excess gain. This can be useful if there is severe environmental contamination or to achieve long operating times.

Make sure that there are no objects in the beam path and that the sensor is connected to the power supply.

- 6. Cover the receiver or transmitter.
- 7. Connect the white cable on the receiver (WH/IN) to the blue cable (BU/0 V) on the receiver. The green and yellow LED indicators flash simultaneously at 2.5 Hz
- 8. Disconnect the white cable on the receiver (WH/IN) from the blue cable (BU/0 V) on the receiver. The green and yellow LED indicators flash alternately at 2.5 Hz
- 9. The end of the Teach-in process is indicated when the green LED indicator lights up static.

Laser notice laser class 1

- The irradiation can lead to irritation especially in a dark environment. Do not point at people!
- Maintenance and repairs should only be carried out by authorized service personnel!
- Attach the device so that the warning is clearly visible and readable.
- The warning accompanies the device and should be attached in immediate proximity to the device.
- Caution Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation
 exposure.