

## Model Number

## OBE1000-R3-SE2-0,2M-V3-L

Laser thru-beam sensor
with 0.2 m fixed cable and M8 connector, 3pin

## Features

- Ultra-small housing design
- DuraBeam Laser Sensors - durable and employable like an LED
- $45^{\circ}$ cable outlet for maximum mounting freedom under extremely tight space constraints
- Improvement in machine availability with abrasion-resistant, antistatic glass front


## Product information

The R3 series nano sensor has been developed for a broad range of applications. It offers excellent durability and is exceptionally easy to install. The housing is compact and, with its $45^{\circ}$ cable outlet, can be installed in the smallest spaces. New functional principles and functionality open up a range of new opti-

## Dimensions



## Electrical connection



## Pinout

## Indicators/operating means



## Technical data

System components
Emitter
Receiver
General specifications
Effective detection range
Threshold detection range
Light source
Light type
Laser nominal ratings Note
Laser class
Wave length
Beam divergence
Pulse length
Repetition rate max. pulse energy
Diameter of the light spot
Angle of divergence
Optical face
Ambient light limit
Functional safety related parameters

| MTTF $_{\text {d }}$ | 806 a |
| :--- | :--- |
| Mission Time (TM) | 20 a |

Diagnostic Coverage (DC)
Indicators/operating means
Operation indicator

Function indicator

Electrical specifications

| Operating voltage | $\mathrm{U}_{\mathrm{B}}$ |
| :--- | :--- |
| No-load supply current | $\mathrm{I}_{0}$ |

Protection class
Input
Test input
Switching type
Signal output
Switching voltage
Switching current
Voltage drop
Switching frequency
Response time
Conformity
Product standard
Laser safety
Ambient conditions
Ambient temperature

## Mechanical specifications

Housing width
Housing height
Housing depth
Degree of protection
Connection
Material
Housing

Optical face
Cable
Mass
Cable length

## Approvals and certificates

UL approval
CCC approval
FDA approval
0 ... 1 m
1.5 m

1
680 nm
$>5$ mrad
9.5 nJ
frontal

806 a
20 a
0 \%

B $12 \ldots 24 \mathrm{~V}$

III
$\leq 1.5 \mathrm{~V}$ DC
$250 \mu \mathrm{~s}$
7.5 mm

26 mm
13.8 mm

IP67
glass
PUR
200 mm

OBE10M-R3-0,2M-V3-L
OBE1000-R3-E2-0,2M-V3-L
laser diode
modulated visible red light, 680 nm
LASER LIGHT, DO NOT STARE INTO BEAM
approx. $2 \mu \mathrm{~s}$
approx. 16.6 kHz
approx. 3 mm at a distance of 1000 mm
approx. $0.5^{\circ}$
EN 60947-5-2 : 30000 Lux

LED green, statically lit Power on, short-circuit : LED green flashing (approx. 4 Hz )
Receiver: LED yellow, lights up when light beam is free, flashes when falling short of the stability control ; OFF when light beam is interrupted

Emitter: $\leq 10 \mathrm{~mA}$
Receiver: $\leq 8 \mathrm{~mA}$

Test of switching function at 0 V

NO contact
1 PNP output, short-circuit protected, reverse polarity protected, open collector
max. 30 V DC
max. 50 mA , resistive load
approx. 2 kHz

EN 60947-5-2
EN 60825-1:2007
$-20 \ldots 60^{\circ} \mathrm{C}\left(-4 \ldots 140^{\circ} \mathrm{F}\right)$
$-30 \ldots 70^{\circ} \mathrm{C}\left(-22 \ldots 158^{\circ} \mathrm{F}\right)$

200 mm fixed cable with 3 -pin, M8 x 1 connector

PC/ABS and TPU
approx. 10 g Per sensor

E87056 , cULus Recognized, Class 2 Power Source
CCC approval / marking not required for products rated $\leq 36 \mathrm{~V}$
IEC 60825-1:2007 Complies with 21 CFR 1040.10 and
1040.11 except for deviations pursuant to Laser Notice No.

50, dated June 24, 2007

## Laserlabel

## CLASS 1 <br> LASER PRODUCT

IEC 60825-1: 2007 certified.
Complies with 21 CFR 1040.10 and
1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007

## Accessories

## V3-WM-2M-PUR

Female cordset single-ended, M8, 3-pin, PUR cable

MH-R3-01
Mounting aid for sensors from the R3 series, mounting bracket

## MH-R3-02

Mounting aid for sensors from the R3
series, mounting bracket

## MH-R3-03

Mounting aid for sensors from the R3
series, mounting bracket

## MH-R3-04

Mounting aid for sensors from the R3 series, mounting bracket

Other suitable accessories can be found at www.pepperl-fuchs.com

## Curves/Diagrams




## Teach-In Methods

The thru-beam sensor enables the switching points to be taught in for optimum adaptation to specific applications. This eliminates the need for additional components such as apertures.
The sensitivity of the thru-beam sensor can be adjusted using three Teach-in methods:

## Position Teach

When using this Teach-in method, the following settings are made on the thru-beam sensor:

- The gain is set to an optimum value
- The signal threshold is set to a minimum



Recommended application:
This method enables minuscule particles in the beam path to be detected, and provides exceptional positioning accuracy.
Make sure that there are no objects in the beam path and that the sensor is connected to the power supply.

1. Connect the white cable on the receiver $(\mathrm{WH} / \mathrm{IN})$ to the blue cable $(\mathrm{BU} / 0 \mathrm{~V})$ on the receiver. The green and yellow LED indicators flash simultaneously at 2.5 Hz
2. Disconnect the white cable on the receiver $(W H / I N)$ from the blue cable $(B U / O V)$ on the receiver.

The green and yellow LED indicators flash alternately at 2.5 Hz
3. The end of the Teach-in process is indicated when the green LED indicator lights up static and yellow LED blinks.

Two-Point Teach-In
When using this Teach-in method, the following settings are made on the thru-beam sensor:

- The gain is set to an optimum value
- The signal threshold is set in the center between the two taught signal values


1. Make sure that there are no objects in the beam path and that the sensor is connected to the power supply.
2. Connect the white cable on the receiver $(\mathrm{WH} / \mathrm{IN})$ to the blue cable $(\mathrm{BU} / \mathrm{O} \mathrm{V})$ on the receiver. The green and yellow LED indicators flash simultaneously at 2.5 Hz
3. Position the object in the beam path.
4. Disconnect the white cable on the receiver $(\mathrm{WH} / \mathrm{IN})$ from the blue cable $(\mathrm{BU} / 0 \mathrm{~V})$ on the receiver. The green and yellow LED indicators flash alternately at 2.5 Hz
5. The end of the Teach-in process is indicated when the green LED indicator lights up static.

## Maximum Teach-In

When using this Teach-in method, the following settings are made on the thru-beam sensor:

- The gain is set to a maximum
- The signal threshold is set to a minimum



Recommended application:
Enables an object to be detected with a high excess gain. This can be useful if there is severe environmental contamination or to achieve long operating times.
Make sure that there are no objects in the beam path and that the sensor is connected to the power supply.
6. Cover the receiver or transmitter.
7. Connect the white cable on the receiver $(\mathrm{WH} / \mathrm{IN})$ to the blue cable $(\mathrm{BU} / 0 \mathrm{~V})$ on the receiver. The green and yellow LED indicators flash simultaneously at 2.5 Hz
8. Disconnect the white cable on the receiver $(\mathrm{WH} / \mathrm{IN})$ from the blue cable $(\mathrm{BU} / \mathrm{O} \mathrm{V})$ on the receiver. The green and yellow LED indicators flash alternately at 2.5 Hz
9. The end of the Teach-in process is indicated when the green LED indicator lights up static.

## Laser notice laser class 1

- The irradiation can lead to irritation especially in a dark environment. Do not point at people!
- Maintenance and repairs should only be carried out by authorized service personnel!
- Attach the device so that the warning is clearly visible and readable.
- The warning accompanies the device and should be attached in immediate proximity to the device.
- Caution - Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

