BVLLALL

BOS R01E-UI-KH22-00,2-S49 BOS R01E-UI-KH32-00,2-S4

deutsch Betriebsanleitungenglish User's Guide

www.balluff.com

BALLUFF

BOS R01E-UI-KH22-00,2-S49 BOS R01E-UI-KH32-00,2-S4

Betriebsanleitung

Bestellcode	Rotlicht Lichttaster	

BOS0265	BOS R01E-UI-KH22-00,2-S49	IO-Link einstellbar	Kabel mit S49-Steckverbinder
BOS0279	BOS R01E-UI-KH32-00,2-S4	IO-Link einstellbar	Kabel mit S4-Steckverbinder
– Rohustes	Gehäuse		

E

Komfortable Einstellung via IO-Link Teach-In

Einfache Ausrichtung durch gut sichtbaren Lichtfleck _

Umfangreiche Parametriermöglichkeiten

Sicherheitshinweise

Diese optoelektronischen Sensoren dürfen nicht in Anwendungen eingesetzt werden, in denen die Sicherheit von Personen von der Gerätefunktion abhängt (kein Sicherheitsbauteil gemäß EU-Maschinenrichtlinie). Vor Inbetriebnahme ist die Betriebsanleitung sorgfältig zu lesen.

Freie Gruppe nach IEC 62471. NICHT DIREKT IN DEN STRAHL BLICKEN! Der Sensor ist so zu montieren, dass auch während des Betriebs kein direkter Blick in den Sender möglich ist.

Mit dem CE-Zeichen bestätigen wir, dass unsere Produkte den Anforderungen der aktuellen EMV-Richtlinie entsprechen.

In unserem EMV-Labor, das von der DATech für Prüfungen der elektromagnetischen Verträglichkeit akkreditiert ist, wurde der Nachweis erbracht, dass die Balluff Produkte die EMV-Anforderungen der Norm EN 60947-5-2 erfüllen.

Nur für Applikationen nach NFPA 79 (Maschinen mit einer Versorgungsspannung von max. 600 Volt). Für den Anschluss des Geräts ist ein R/C(CYJV2)-Kabel mit geeigneten Eigenschaften zu verwenden. Nur an der Sekundärseite einer Class-2-Spannungsquelle betreiben. Maximale Umgebungstemperatur: 55 °C Only for NFPA 79 applications (machines with a supply voltage of max. 600 volts). Device shall be connected only by using any R/C (CYJV2) cord, having suitable ratings. For use only in the secondary of a Class 2 source of supply. Maximum ambient temperature: 55 °C Uniquement pour applications selon NFPA 79 (machines avec une tension d'alimentation de 600 volts max.). Pour le raccordement de l'appareil, il faut utiliser un câble R/C (CYJV2) aux caractéristiques appropriées. À utiliser uniquement sur le côté secondaire d'une source de tension de classe 2. Température ambiante maximale: 55 °C

Montage

Achtung! Blicken Sie nicht in den Lichtstrahl.

Bild 2: Steckerbild, Anschlussschaltbild

Anzeigeelemente

Gelbe LED Lichtempfangs-/Stabilitätsanzeige

LED leuchtet: Licht am Empfänger.

LED blinkt: Unsicherer Bereich.

Bild 3: Lichtfleckdurchmesser in Abhängigkeit vom Schaltabstand

Messgenauigkeit

Der Sensor erreicht seine volle Genauigkeit erst nach einer Einschaltzeit von mindestens 3 Minuten unter konstanten Umgebungsbedingungen.

Die Dauer der Warmlaufphase hängt von den Umgebungsbedingungen ab.

Sensortausch

Wir weisen darauf hin, dass nach dem Sensortausch unter Umständen eine Nachparametrierung der Schaltpunkte notwendig ist.

IO-Link-Master

Wir empfehlen die Verwendung von IO-Link-Mastern der Firma Balluff.

Entsorgung

Befolgen Sie die nationalen Vorschriften zur Entsorgung.

Tec	hnisc	he	Dat	en
100	in ne e	110		011

Optisch	
Tastweite, einstellbar über IO-Link	50100mm
Grauwertverschiebung (90% auf 18% Graukarte)	≤ 10 %
Lichtart	LED Rotlicht
Wellenlänge λ	650 nm
Lichtfleckgröße, typisch	Ø 3 mm Lichtaustritt
Strahlcharakteristik	divergent
LED-Gruppe	freie Gruppe
Elektrisch	
Betriebsspannung U _B	1030 V DC (IO-Link-Modus 1830 V)
Bemessungs-Betriebsspannung U_e	24 V
Restwelligkeit (% von U_{e})	5 %
Leerlaufstrom $\rm I_{\rm o}$ bei $\rm U_{\rm e}$	< 20 mA
Bemessungs-Betriebsstrom $I_{_{\rm e}}$	100 mA
Bemessungs-Isolationsspannung L	I, 75 V DC
Zul. Lastkapazität	0,1 µF
Spannungsfall U_d bei I_e	0,8 V
Ausgangsart je nach Betriebsmo- dus	IO-Link oder PNP/NPN /Push Pull (Standard: IO-Link/PNP)
Kurzschlussschutz	ја
Verpolungssicher	ја
Schaltfunktion (Schließer/Öffner)	umschaltbar (Standard: Schließer)
Ausgangsfunktion hell-/dunkelschaltend	umschaltbar (Standard: hellschaltend)

Zeit (SIO-Modus)

Einschaltverzug	1,0 ms
Ausschaltverzug	1,0 ms
Schaltfrequenz	500 Hz

IO-Link Daten

Übertragungsrate	38,4 kbit/s (COM2)
Minimale Zykluszeit	2,3 ms

Mechanisch	
Anschlussart	
BOS R01E00,2-S49	0,2 m, PUR, Ø 3 mm² M8-Stecker, 3-polig
BOS R01E00,2-S4	0,2 m, TPE-V, Ø 3 mm ² M12-Stecker, 4-polig
Werkstoff Gehäuse	Stahl nichtrostend (1.4404)
Werkstoff aktive Fläche	PA
Gehäuseabmessungen	20 mm × 9 mm × 32 mm
Gewicht	27,2 g
Anzeigen	
Lichtempfangsanzeige	gelbe LED
Grenzbereich	gelbe LED blinkt
Umgebung	
Umgebungstemperatur	-5+55 °C

Technische Daten (Fortsetzung)

Smart-Sensor-Funktionen

Bild 4: Smart-Sensor-Funktionen

Umgebungstemperatur	−5…+55 °C
Schutzart nach IEC 60529	IP67
Fremdlicht	≤ 5000 Lux

Prozessdaten

Ausgangsdaten

Der Sensor überträgt 1 Byte Prozessdaten an den Master (Process Data In: 1 Byte, M-Sequence Typ: TYPE_2_1).

Byte 0							
7	6	5	4	3	2	1	0
					Teach-In	Uncertainty	BDC1

BDC1

Binäre Zustandsinformation (Schaltpunkt):

- 1 aktiv
- 0 inaktiv

Uncertainty

- 1 Unsicherer Bereich: Sensor verschmutzt, Reinigung erforderlich oder geringe Funktionsreserve
- 0 Schaltpunktinformation im sicheren Bereich

Teach-In

- 1 Teach-In aktiv
- 0 Teach-In inaktiv

Eingangsdaten

Der Sensor empfängt keine Prozessdaten vom Master.

System-Parameter

Index (dez)		Subindex (dez)		Datenformat	Zugriff	Wertebereich	Bemerkung
0x000C (12)	Device Access Locks	0x00 (0)		RecordT of BooleanT	R/W	Bit 0: Parameter Access 0 = freigegeben 1 = gesperrt	Gesperrt = Alle Parameter schreibgeschützt, außer Device Access Locks
						Bit 1: Data Storage 0 = freigegeben 1 = gesperrt	
0x000D	Profile	0x01 (1)	DeviceProfile ID	UINT16	R	0x0001	Smart Sensor Profile
(13)	Characteristic	0x02 (2)	FunctionClassID	UINT16	R	0x8000	Device Identification
		0x03 (3)	FunctionClassID	UINT16	R	0x8001	Binary Data Channel
		0x04 (4)	FunctionClassID	UINT16	R	0x8003	Diagnosis
		0x05 (5)	FunctionClassID	UINT16	R	0x8004	Teach Channel
0x000E	PD Input	0x01 (1)	PVinD1	OctetStringT3	R	0x010100	BDC1
(14)	Descriptor	0x02 (2)	PVinD2	OctetStringT3	R	0x010101	Uncertainty
		0x03 (3)	PVinD3	OctetStringT3	R	0x010102	Teach-In

Identifikations-Parameter

Index (dez)		Datenformat (Länge)	Zugriff	Inhalt	Bemerkung
0x0010 (16)	Vendor Name	StringT	R	Balluff	
Ox0011 (17)	Vendor Text	StringT	R	www.balluff.com	
0x0012 (18)	Product Name	StringT	R	BOS R01E-UI-KH22 -00,2-S49	
0x0013 (19)	Product ID	StringT	R	BOS0265	Bestellcode
0x0014 (20)	Product Text	StringT	R	Background Suppression Sensor red light	
0x0016 (22)	Hardware Revision	StringT	R	x.y	
0x0017 (23)	Firmware Revision	StringT	R	X.Y.Z	
0x0018 (24)	Application Specific Tag	StringT	R/W	32 x "0"	Max. 32 Zeichen

Diagnose-Parameter

Index (dez)		Subindex (dez)	Datenformat	Zugriff	Wertebereich	Bemerkung
0x0024	Device	0x00 (0)	UINT8	R	0x00 = Device OK	
(36)	Status				0x02 = Out-of-Specification	Bei Unterspannung oder Übertemperatur
					0x04 = Failure	Hardware Initialisie- rungsfehler. Bitte Sensor ersetzen.
0x0025 (37)	Detailed Device	0x00 (0)	ArrayT of OctetStringT3	R	0xE45111 = Supply Voltage Underrun	Ist als dynamische Liste implementiert
	Status				0xE44210 = Temperature Overrun	
					0xF45000 = Hardware Error	
0x0028 (40)	Process Data Input	0x00 (0)	UINT8	R		Siehe Prozessda- ten

Systemkommandos

Index (dez)		Daten- format	Zugriff	Wertebereich		Bemerkung
0x0002 (2)	System Command	UINT8	W	0x01 = ParamUploadStart	Blockpa- rametrie-	Start Blockparametrierung Device → Master
				0x02 = ParamUploadEnd	rung	Stopp Blockparametrierung Device → Master
				0x03 = ParamDownloadStart		Start Blockparametrierung Master \rightarrow Device
				0x04 = ParamDownloadEnd		Stopp Blockparametrierung Master \rightarrow Device
				0x05 = ParamDownloadStore		Stopp Blockparametrierung Master \rightarrow Device & Upload Request
				0x06 = ParamBreak		Blockparametrierung abbrechen
				0x40 = Teach apply	Teach Channel	Schaltpunkt prüfen und übernehmen
				0x41 = SP1 Single Value Teach		SP1 einlernen
				0x42 = SP2 Single Value Teach		SP2 einlernen
				0x43 = SP1 Two Value Teach TP1		TP1 von SP1 einlernen
				0x44 = SP1 Two Value Teach TP2		TP2 von SP1 einlernen
				0x45 = SP2 Two Value Teach TP1		TP1 von SP2 einlernen
				0x46 = SP2 Two Value Teach TP2		TP2 von SP2 einlernen
				0x47 = SP1 Dynamic Teach Start		Dynamischen Teach-In für SP1 starten*
				0x48 = SP1 Dynamic Teach Stop		Dynamischen Teach-In für SP1 beenden
				0x49 = SP2 Dynamic Teach Start		Dynamischen Teach-In für SP2 starten
				0x4A = SP2 Dynamic Teach Stop		Dynamischen Teach-In für SP2 beenden*
				0x4F = Teach cancel		Teach-In abbrechen
				0x4B = SP1 Fine Adjust Near		SP1 dekrementieren
				0x4C = SP1 Fine Adjust Far		SP1 inkrementieren
				0x4D = SP2 Fine Adjust Near		SP2 dekrementieren
				0x4E = SP2 Fine Adjust Far		SP2 inkrementieren
				0x80 = Device reset	Reset	Reset device
				0x82 = Restore factory settings		Reset der Sensorparametrierung auf Werkseinstellung
				0xA0 = Sensor sleep	Balluff	Sender LED OFF
				0xA1 = Sensor wake-up	specific	Sender LED ON
				0xA2 = Restore BDC		BDC1 auf Werkseinstellung zurücksetzen
	*Diese Komr	nandos ve	rwenden,	um SP1 und SP2 in einem e	inzigen Teach-	In Vorgang einzulernen.

Profilspezifische Parameter

Index (dez)		Subindex (dez)		Daten- format	Zugriff	Wertebereich	Bemerkung
0x003A (58)	Teach-In Channel	0x00 (0)		UINT8	R/W	0, 1, 255	BDC1 Standard
0x003B (59)	Teach-In Status	0x00 (0)		UINT8	R	Siehe Smart-Sensor- Funktionen	
0x003C	Set Point	0x01 (1)	Setpoint SP1	UINT16	R/W	0x00320x0064	50100 [mm]
(60)	Value (BDC1)	0x02 (2)	Setpoint SP2				Sensor führt Plausibilitätsprü- fung durch*
0x003D	Switch Point	0x01 (1)	Switchpoint	UINT8 UINT8	R/W R/W	0x00 = N.O.	
(61)	Configuration (BDC1)		Logic			0x01 = N.C.	
		(BDCT) 0x02 (2)	Switchpoint Mode			0x01 = Single Point Mode	Sensor führt Plausibilitätsprü-
						0x02 = Window Mode	
						0x03 = Two Point Mode	
		0x03 (3)	Switchpoint Hysteresis	UINT16	R/W	010	0 = min. Hysterese 10 = max. Hysterese
*Im Window Mode & Two Point Mode muss SP1 näher am Sensor sein als SP2.							

Events

Event Code	Bedeutung	Mode	Тур	Instanz	DeviceStatus	Bemerkung
0x4210	Übertemperatur	gekommen/ gegangen	Warnung	Applikation	Out-of- Specification	$T_A > \approx 60^{\circ}C (U_B = 24 \text{ V})$
0x5111	Unterspannung	gekommen/ gegangen	Warnung	Applikation	Out-of- Specification	U _B < 16 V
0x8DB0	Teach-In Timeout	einmalig	Meldung	Applikation		Teach-In Abbruch Meldung nach 1 Minute im Dynamic- Teach Modus oder generell nach 10 Minuten im Teach Modus
0xFF91	DS Upload Request	einmalig	Meldung	Applikation		Nach Systemkommando ParamDownloadStore

Werkseinstellungen

Bei Auslieferung und nach dem Systemkommando Restore factory settings liegen folgende Einstellungen vor:

Parameter – Binary Data Channel

Index (dez)		Subindex (dez)		Werkseinstellung	Bemerkung
0x3C	Set Point Value (BDC1)	0x01	Setpoint SP1	0x004B	75 mm
(60)		0x02	Setpoint SP2	0x0055	85 mm
0x3D Sv (61)	Switch Point Configuration (BDC1)	0x01	Switchpoint Logic	0x00	N.O.
		0x02	Switchpoint Mode	0x01	Single Point Mode
		0x03	Switch point Hysteresis	0x0005	

Parameter – Teach Channel

Index (dez)	Parameter	Werkseinstellung	Bemerkung
0x003A (58)	Teach-In Channel	0x00	Standard BDC = BDC1
0x003B (59)	Teach-In Status	0x00	Teach State = IDLE

Weitere Parameter

Index (dez)	Subindex (dez)	Parameter	Werkseinstellung	Bemerkung
0x0018 (24)	0x00	Application Specific Tag	32 × "0"	
0x00B4 (180)	0x01	Output Type SIO	0x01 (PNP)	0: Deaktiviert 1: PNP 2: NPN 3: Push Pull

Schaltmodi

Single Point Mode

BDC1 <u>N.C.</u>

SP1

SP1

+Hyst

Window Mode

SP1 SP2 SP2 S

-Hyst

SP2

s

Statisches Teach-In mit einem Teach-Punkt

Prinzip

Der Schaltpunkt SPy wird durch Einlernen von einem Teach-Punkt ermittelt.

Funktion:	SPy = Einlernen auf statisches Objekt
Frachaia	CD (light hai day Objektageition

Ergebnis: SPy liegt bei der Objektposition

Single Value Teach

Teach-In-Status

Der Teach-In-Status kann jeweils zur Überprüfung ausgelesen werden.

Teach Flags					Teach	State	
SF	2	SP1					
TP2	TP1	TP2	TP1				
Beispie " 0 " = T eingele erfolgre " 1 " = T erfolgre	spiel zu: = TP1 von SP2 nicht gelernt oder nicht blgreich = TP1 von SP2 blgreich		0 = ID 1 = SF 2 = SF 3 = SF 4 = W 5 = BU 6 = res 7 = EF	LE P1 SUC P2 SUC P12 SUC P12 SUC P12 SUC P12 SUC AIT FOF JSY Served ROR	CESS CESS CCESS R COMI	MAND	

Teach-Anleitung

Das Teach-In wird anhand von SP1 erklärt. Für SP2 gilt mit den entsprechenden Befehlen die gleiche Abfolge.

Voraussetzung

Der Sensor ist montiert, ausgerichtet und im IO-Link-Betrieb.

Vorgehensweise

- 1. Das Objekt im Strahlengang positionieren.
- 2. SP1 Teach-In starten: Systemkommando 0x41 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x41	SP1 Single Value Teach

- **3.** Objekt aus dem Erfassungsbereich entfernen.
- **4.** Schaltpunkt SP1 speichern und übernehmen: Systemkommando 0x40 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung	
W	0x002 (2)	0x40	Teach Apply	

5. Überprüfen, ob SP1 erfolgreich übernommen wurde. Auslesen und Überprüfen des Parameters Teach-In Status mit Index 0x003B.

Zugriff	Index	Wert	Bedeutung	Ergebnis
R	0x003B	0x01	SP1 erfolgreich übernommen. Teach-In State = SP1 SUCCESS (0x01)	Teach-In erfolgreich beendet
		0x07	Teach-In State = ERROR	Zurück zu Schritt 2

Statisches Teach-In mit zwei Teach-Punkten

Prinzip

Schaltpunkt SPy wird durch Einlernen von zwei Teach-Punkten (TP1 und TP2) ermittelt.

Funktion:	TP1 = Einlernen auf statisches Objekt
	TP2 = Einlernen auf Hintergrund

Ergebnis: SPy liegt zwischen Objekt und Hintergrund

Two Value Teach

Teach-In-Status

Der Teach-In-Status kann jeweils zur Überprüfung ausgelesen werden.

Teach Flags			Teach State				
SF	SP2 SP1						
TP2	TP1	TP2	TP1				
Beispiel zu: "0" = TP1 von SP2 nicht eingelernt oder nicht erfolgreich			0 = ID 1 = SF 2 = SF 3 = SF 4 = W 5 = BU	LE P1 SUC P2 SUC P12 SU(AIT FOF JSY	CESS CESS CCESS R COMI	MAND	
" 1 " = TP1 von SP2 erfolgreich eingelernt				6 = re: 7 = EF	served RROR		

Teach-Anleitung

Two Value Teach wird anhand von SP1 erklärt. Für SP2 gilt mit den entsprechenden Befehlen die gleiche Abfolge.

Voraussetzung

Der Sensor ist montiert, ausgerichtet und im IO-Link-Betrieb.

Vorgehensweise

- **1.** Das Objekt im Strahlengang positionieren.
- 2. SP1 Teach-Punkt TP1 einlernen: Systemkommando 0x43 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x43	SP1 Two Value Teach TP1

3. Überprüfen, ob TP1 erfolgreich eingelernt wurde. Auslesen und Überprüfen des Parameters Teach-In Status mit Index 0x003B.

Zugriff	Index	Wert	Bedeutung	Ergebnis
R	0x003B	0x14	TP1 von SP1 erfolgreich eingelernt Teach-In State = WAIT FOR COMMAND	Weiter zu Schritt 4
		0x07	Teach-In State = ERROR	Zurück zu Schritt 2

- **4.** Objekt aus dem Erfassungsbereich entfernen. Optional: Objekt im Erfassungsbereich verschieben, um zweite Objektposition zu speichern.
- **5.** SP1 Teach-Punkt 2 (TP2) einlernen: Systemkommando 0x44 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x44	SP1 Two Value Teach TP2

6. Überprüfen, ob TP2 erfolgreich eingelernt wurde. Auslesen und Überprüfen des Parameters Teach-In Status mit Index 0x003B.

Zugriff	Index	Wert	Bedeutung	Ergebnis
R	0x003B	0x34	TP1 und TP2 von SP1 erfolgreich eingelernt Teach-In State = WAIT FOR COMMAND	Weiter zu Schritt 7
		0x07	Teach-In State = ERROR	Zurück zu Schritt 2

7. Schaltpunkt SP1 speichern und übernehmen: Systemkommando 0x40 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x40	Teach Apply

8. Überprüfen, ob SP1 erfolgreich übernommen wurde. Auslesen und Überprüfen des Parameters Teach-In Status mit Index 0x003B.

Zugriff	Index	Wert	Bedeutung	Ergebnis
R	0x003B	0x01	SP1 erfolgreich übernommen. Teach-In State = SP1 SUCCESS (0x01)	Teach-In erfolgreich beendet
		0x07	Teach-In State = ERROR	Zurück zu Schritt 2

Dynamisches Teach-In (ein Schaltpunkt). Nur für SP1 anwendbar

Prinzip

Das dynamische Teach-In ermöglicht die Schaltpunkteinstellung, ohne den Prozess anzuhalten. Typische Anwendung: Schaltpunkteinstellung bei seitlich anfahrenden Objekten auf einem Fließband.

Während des Teach-Vorgangs, der mit dem Start-kommando beginnt und mit dem Stop-kommando endet, führt der Sensor Messungen durch und ermittelt den Minimalund Maximalwert der Messwerte. Mit dem Kommando *Teach Apply* wird der Schaltpunkt SP1 festgelegt.

Dynamic Teach

Teach-In-Status

Der Teach-In-Status kann jeweils zur Überprüfung ausgelesen werden.

Teach Flags				Teach State			
SF	SP2 SP1						
TP2	TP1	TP2	TP1				
Beispiel zu: " 0 " = TP1 von SP2 nicht eingelernt oder nicht erfolgreich			0 = ID 1 = SF 2 = SF 3 = SF 4 = W, 5 = BL	LE P1 SUC P2 SUC P12 SU(AIT FOF JSY	CESS CESS CCESS R COMI	MAND	
" 1 " = TP1 von SP2 erfolgreich eingelernt				6 = res 7 = EF	served RROR		

Teach-Anleitung

Dieser Teach-Vorgang ist nur für SP1 anwendbar.

Voraussetzung

Der Sensor ist montiert, auf den laufenden Prozess ausgerichtet und im IO-Link-Betrieb.

Vorgehensweise

1. Dynamisches Teach-In starten: Systemkommando 0x47 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x47	SP1 Dynamic Teach Start

- Warten bis mindestens ein Prozesszyklus im Lichtweg stattgefunden hat. Das dynamische Teach-In wird automatisch beendet, wenn während >1 min. kein Objekt erkannt wird oder wenn während >10 min. das Teach-In nicht bestätigt wird. Der Sensor behält in diesem Fall den alten Schaltpunkt.
- **3.** Dynamisches Teach-In stoppen: Systemkommando 0x48 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x48	SP1 Dynamic Teach Stop

4. Überprüfen, ob der Einlernvorgang erfolgreich war: Auslesen und Überprüfen des Parameters Teach-In Status mit Index 0x003B.

Zugriff	Index	Wert	Bedeutung	Ergebnis
R	0x003B	0x34	Dynamisches Einlernen von SP1 erfolgreich Teach-In State = WAIT FOR COMMAND	Weiter zu Schritt 5
		0x07	Teach-In State = ERROR	Zurück zu Schritt 1

5. Schaltpunkt SP1 übernehmen und speichern: Systemkommando 0x40 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x40	Teach Apply

6. Überprüfen, ob SP1 erfolgreich übernommen wurde: Auslesen und Überprüfen des Parameters Teach-In Status mit Index 0x003B.

Zugriff	Index	Wert	Bedeutung	Ergebnis
R	0x003B	0x01	SP1 erfolgreich übernommen. Teach-In State = SP1 SUCCESS (0x01)	Teach-In erfolgreich beendet
		0x07	Teach-In State = ERROR	Zurück zu Schritt 1

Dynamisches Teach-In (beide Schaltpunkte)

Prinzip

Das dynamische Teach-In ermöglicht die Schaltpunkteinstellung, ohne den Prozess anzuhalten.

Typische Anwendung: Schaltpunkteinstellung bei einem sich im Sensorerfassungsbereich bewegenden Objekt, das in einem bestimmten Abstandsbereich erkannt werden soll (Window Mode).

Während des Teach-Vorgangs, der mit dem Start-kommando beginnt und mit dem Stop-kommando endet, führt der Sensor Messungen durch und ermittelt den Minimalund Maximalwert der Messwerte. Mit dem Kommando *Teach Apply* werden die Schaltpunkte SP1 und SP2 festgelegt.

Dynamic Teach

Teach-In-Status

Der Teach-In-Status kann jeweils zur Überprüfung ausgelesen werden.

Teach Flags				Teach	State		
SF	2	2 SP1					
TP2	TP1	TP2	TP1				
Beispie " 0 " = T eingele erfolgre " 1 " = T erfolgre	el zu: P1 von ernt ode eich P1 von eich ein	SP2 ni er nicht SP2 gelernt	icht	0 = ID $1 = SF$ $2 = SF$ $3 = SF$ $4 = W$ $5 = BU$ $6 = reg$ $7 = EF$	LE P1 SUC P2 SUC P12 SUC AIT FOF JSY served RROR	CESS CESS CCESS R COMI	MAND

Teach-Anleitung

Voraussetzung

Der Sensor ist montiert, auf das sich bewegende Objekt ausgerichtet und im IO-Link-Betrieb. Switchpoint Mode ist als "Window Mode" konfiguriert.

Vorgehensweise

1. Dynamisches Teach-In starten: Systemkommando 0x47 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x47	SP1 Dynamic Teach Start

- Warten bis mindestens ein Prozesszyklus im Lichtweg stattgefunden hat. Das dynamische Teach-In wird automatisch beendet, wenn während >1 min. kein Objekt erkannt wird oder wenn während >10 min. das Teach-In nicht bestätigt wird. Der Sensor behält in diesem Fall den alten Schaltpunkt.
- **3.** Dynamisches Teach-In stoppen: Systemkommando 0x4A an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x4A	SP2 Dynamic Teach Stop

 Überprüfen, ob der Einlernvorgang erfolgreich war: Auslesen und Überprüfen des Parameters Teach-In Status mit Index 0x003B.

Zugriff	Index	Wert	Bedeutung	Ergebnis
R	0x003B	0xF4	Dynamisches Einlernen von SP1 und SP2 erfolgreich. Teach-In State = WAIT FOR COMMAND	Weiter zu Schritt 5
		0x07	Teach-In State = ERROR	Zurück zu Schritt 1

5. Schaltpunkte SP1 und SP2 übernehmen und speichern:

Systemkommando 0x40 an Sensor schicken.

Zugriff	Index	Wert	Bedeutung
W	0x002 (2)	0x40	Teach Apply

6. Überprüfen, ob SP1 und SP2 erfolgreich übernommen wurden:

Auslesen und Überprüfen des Parameters Teach-In Status mit Index 0x003B.

Zugriff	Index	Wert	Bedeutung	Ergebnis
R	0x003B	0x03	SP1 und SP2 erfolgreich über- nommen. Teach-In State = SP12 SUCCESS	Teach-In erfolgreich beendet
		0x07	Teach-In State = ERROR	Zurück zu Schritt 1

BALLUFF

BOS R01E-UI-KH22-00,2-S49 BOS R01E-UI-KH32-00,2-S4

User's Guide

2 BALLUFF english

sur le côté secondaire d'une source de tension de classe 2. Température ambiante maximale: 55 °C

Fig. 2: Connection diagram, pinouts

Display Elements

Yellow LED light reception / stability indicator

LED on: Light at the receiver.

LED flashes: Unreliable range.

Light spot diameter

Fig. 3: Light spot diameter depending on distance to the object

Measuring accuracy

The sensor attain its full accuracy under constant ambient conditions at min. 3 minutes after power-on. The duration of this warm-up phase depends on ambient conditions.

Sensor replacement

Sensor replacement may require a re-parameterization of the switching points.

IO-Link Master

We recommend the use of Balluff IO-Link Masters.

Disposal

Observe the national regulations for disposal.

Technical Data	
Optical	
Range, adjustable via IO-Link	50100mm
Gray value shift (gray card 90% to 18%)	≤ 10%
Light type	LED red light
Wave length λ	650 nm
Light spot size, typ.	Ø 3 mm light source
Beam characteristic	divergent
LED Group	Exempt Group
Electrical	
Supply voltage U _B	1030 V DC (IO-Link-Mode 1830 V)
Rated operating voltage U _e	24 V
Ripple (% of U _e)	5%
No-load current I _o at U _e	< 20 mA
Effective operating current I _e	100 mA
Rated insulation voltage U _i	75 V DC
Permissible capacitance	0.1 µF
Voltage drop U _d at I _e	0.8 V
Output depending on version	IO-Link or PNP/NPN/ Push Pull (Standard: IO-Link/PNP)
Short circuit protected	yes
Reverse polarity protected	yes
Switching function (N.O./N.C.)	switchable (Standard: N.O.)
Output function dark-on/light-on	switchable (Standard: light-on)
Switching function (N.O./N.C.) Output function dark-on/light-on	switchable (Standard: N.O.) switchable (Standard: light-on)

Time (SIO-Mode)

Turn-on delay	1.0 ms
Turn-off delay	1.0 ms
Switching frequency	500 Hz

IO-Link Data

Transmission rate	38.4 kbit/s (COM2)
Minimum cycle time	2.3 ms

Technical Data (continued)

Red light diffuse reflective BOS R01E-UI-KH22-... with background supres. and IO-Link

Mechanical	
Connection type	
BOS R01E00,2-S49	0.2 m, PUR, Ø 3 mm² M8-connector, 3-pin
BOS R01E00,2-S4	0.2 m, TPE-V, Ø 3 mm ² M12-connector, 4-pin
Housing material	Stainless steel (1.4404)
Active surface material	PA
Housing dimensions	20 mm × 9 mm × 32 mm
Weight	27.2 g

Displays

Light reception indicator	yellow LED
Unreliable range	yellow LED (flashing)

Ambient

Ambient temperature	−5+55 °C
Enclosure rating per IEC 60529	IP67
Ambient light rejection	≤ 5000 Lux

Process data

Output data

Sensor transmits 1 octet of process data to Master. (Process Data In: 1 Byte, M-Sequence Typ: TYPE_2_1).

Byte 0										
7	6	5	4	3	2	1	0			
					Teach-In	Uncertainty	BDC1			

BDC1

Switching point information:

- 1 active
- 0 inactive

Uncertainty

- 1 Unreliable range: Cleaning necessary or functional reserve low
- 0 Switching point information in reliable range

Teach-In

- 1 Teach-In active
- 0 Teach-In inactive

Input data

Sensor does not receive process data from Master.

Smart Sensor Profile

Fig. 4: Smart Sensor functions

Red light diffuse reflective BOS R01E-UI-KH22-... with background supres. and IO-Link

System parameters

Index (dez)		Subindex (dez)		Data format	Access	Value range	Remark
0x000C (12)	Device Access Locks	0x00 (0)		RecordT of BooleanT	R/W	Bit 0: Parameter Access 0 = unlocked 1 = locked	Locked = All parameters read only, except Device Access Locks
						Bit 1: Data Storage 0 = unlocked 1 = locked	
0x000D	Profile	0x01 (1)	DeviceProfile ID	UINT16	R	0x0001	Smart Sensor Profile
(13)	Characteristic	0x02 (2)	FunctionClassID	UINT16	R	0x8000	Device Identification
		0x03 (3)	FunctionClassID	UINT16	R	0x8001	Binary Data Channel
		0x04 (4)	FunctionClassID	UINT16	R	0x8003	Diagnosis
		0x05 (5)	FunctionClassID	UINT16	R	0x8004	Teach Channel
0x000E	PD Input	0x01 (1)	PVinD1	OctetStringT3	R	0x010100	BDC1
(14)	Descriptor	0x02 (2)	PVinD2	OctetStringT3	R	0x010101	Uncertainty
		0x03 (3)	PVinD3	OctetStringT3	R	0x010102	Teach-In

Identification parameters

Index (dez)		Data format (Length)	Access	Value	Remark
0x0010 (16)	Vendor Name	StringT	R	Balluff	
0x0011 (17)	Vendor Text	StringT	R	www.balluff.com	
0x0012 (18)	Product Name	StringT	R	BOS R01E-UI-KH22 -00,2-S49	
0x0013 (19)	Product ID	StringT	R	BOS0265	Order code
0x0014 (20)	Product Text	StringT	R	Background Suppression Sensor red light	
0x0016 (22)	Hardware Revision	StringT	R	X.Y	
0x0017 (23)	Firmware Revision	StringT	R	X.Y.Z	
0x0018 (24)	Application Specific Tag	StringT	R/W	32 x "0"	Max. 32 char

Red light diffuse reflective BOS R01E-UI-KH22-... with background supres. and IO-Link

Diagnostic pa	arameters					
Index (dez)		Subindex (dez)	Data format	Access	Value range	Remark
0x0024	Device	0x00 (0)	UINT8	R	0x00 = Device OK	
(36)	Status				0x02 = Out-of-Specification	Temperature Overrun/Supply Voltage Underrun
					0x04 = Failure	Hardware Initialization Error. Replace sensor
0x0025 (37)	Detailed Device	0x00 (0)	ArrayT of OctetStringT3	R	0xE45111 = Supply Voltage Underrun	Implemented as a dynamic list
	Status				0xE44210 = Temperature Overrun	
					0xF45000 = Hardware Error	
0x0028 (40)	Process Data Input	0x00 (0)	UINT8	R		See Process data

Red light diffuse reflective BOS R01E-UI-KH22-... with background supres. and IO-Link

System commands

Index (dez)		Data format	Access	Value range		Remark
0x0002 (2)	System Command	UINT8	W	0x01 = ParamUploadStart	Block Parameter-	Start Block parameterization Device \rightarrow Master
				0x02 = ParamUploadEnd	ization	Stop Block parameterization Device \rightarrow Master
				0x03 = ParamDownloadStart		Start Block parameterization Master \rightarrow Device
				0x04 = ParamDownloadEnd		Stop Block parameterization Master \rightarrow Device
				0x05 = ParamDownloadStore		Stop Block parameterization Master \rightarrow Device & Upload Request
				0x06 = ParamBreak		Abort Block parameterization
				0x40 = Teach apply	Teach Channel	Check and apply Setpoint
				0x41 = SP1 Single Value Teach		Determine SP1
				0x42 = SP2 Single Value Teach		Determine SP2
				0x43 = SP1 Two Value Teach TP1		Determine Teachpoint 1 for SP1
				0x44 = SP1 Two Value Teach TP2		Determine Teachpoint 2 for SP1
				0x45 = SP2 Two Value Teach TP1		Determine Teachpoint 1 for SP2
				0x46 = SP2 Two Value Teach TP2		Determine Teachpoint 2 for SP2
				0x47 = SP1 Dynamic Teach Start		Start dynamic teach-in for SP1*
				0x48 = SP1 Dynamic Teach Stop		Stop dynamic teach-in for SP1
				0x49 = SP2 Dynamic Teach Start		Start Dynamic teach-in for SP2
				0x4A = SP2 Dynamic Teach Stop		Stop Dynamic teach-in for SP2*
				0x4F = Teach cancel		Abort Teach-in sequence
				0x4B = SP1 Fine Adjust Near		Decrement SP1
				0x4C = SP1 Fine Adjust Far		Increment SP1
				0x4D = SP2 Fine Adjust Near		Decrement SP2
				0x4E = SP2 Fine Adjust Far		Increment SP2
				0x80 = Device reset	Reset Reset device	
				0x82 = Restore factory settings		Restore factory settings
				0xA0 = Sensor sleep	Balluff	Emitter LED OFF
				0xA1 = Sensor wake-up	specific	Emitter LED ON
				0xA2 = Restore BDC		Restore factory settings of BDC1
*These set	موجوع مام مام ما	la a availla	al fau tha al	atawaia atiana af la atla Cata aira		

These commands shall be applied for the determination of both Setpoints SP1 and SP2 in one single teach-in procedure.

Profile-specific parameters

Index (dez)		Subindex (dez)		Data format	Access	Value range	Remark	
0x003A (58)	Teach-In Channel	0x00 (0)		UINT8	R/W	0, 1, 255	BDC1 Standard	
0x003B (59)	Teach-In Status	0x00 (0)		UINT8	R	See Smart Sensor Profile		
0x003C	Set Point	0x01 (1)	Setpoint SP1	UINT16	R/W	0x00320x0064	50100 [mm]	
(60) Value (BDC1)	0x02 (2)	Setpoint SP2				Sensor does plausibility check*		
0x003D	Switch Point	0x01 (1)	(1) Switchpoint Logic	UINT8	R/W	0x00 = N.O.		
(61)	Configuration	on				0x01 = N.C.		
		0x02 (2)) Switchpoint Mode	UINT8	R/W	0x01 = Single Point Mode	Sensor does plausibility check*	
						0x02 = Window Mode		
						0x03 = Two Point Mode		
		0x03 (3)	Switchpoint Hysteresis	UINT16	R/W	010	0 = min. Hysteresis 10 = max. Hysteresis	
	* In \	Window Mod	de & Two Point N	Node, SP1	must be c	loser to the sensor than SP2		

Events

Event Code	Meaning	Mode	Туре	Instance	DeviceStatus	Remark
0x4210	Temperature Overrun	appears/ disappears	Warning	Application	Out-of- Specification	$T_A > \approx 60^{\circ}C (U_B = 24 \text{ V})$
0x5111	Supply Voltage Underrun	appears/ disappears	Warning	Application	Out-of- Specification	U _B < 16 V
0x8DB0	Teach-In Timeout	single shot	Notification	Application		Teach-In abort message after 1 min in Dynamic- Teach or 10 min general in Teach-mode
0xFF91	DS Upload Request	single shot	Notification	Application		Upon system command ParamDownloadStore

Factory settings

At delivery and after System command Restore factory settings the sensor is factory-set:

Parameters of Binary Data Channel

Index (dez)		Subindex (dez)		Value range	Remark
0x3C	Set Point Value (BDC1)	0x01	Setpoint SP1	0x004B	75 mm
(60)		0x02	Setpoint SP2	0x0055	85 mm
0x3D	Switch Point Configuration	0x01	Switchpoint Logic	0x00	N.O.
(61)	(BDC1)	0x02	Switchpoint Mode	0x01	Single Point Mode
		0x03	Switch point Hysteresis	0x0005	

Parameters of Teach Channel

Index (dez)	Parameter	Value range	Remark
0x003A (58)	Teach-In Channel	0x00	Standard BDC = BDC1
0x003B (59)	Teach-In Status	0x00	Teach State = IDLE

Other Parameters

Index (dez)	Subindex (dez)	Parameter	Factory setting	Remark
0x0018 (24)	0x00	Application Specific Tag	32 × "0"	
0x00B4 (180)	0x01	Output Type SIO	0x01 (PNP)	0: Disabled 1: PNP 2: NPN 3: Push Pull

Switchpoint mode

Single Point Mode

Two Point Mode

N.C.

SP1 SP2 SP2 s

-Hyst

ABDC1

SP1

+Hyst

Window Mode

Static Teach-In with one teach point

Principle

Setpoint SPy is set with one teach point.

Function: SPy = Teach static object

Result: SPy at the object position

Teach-In-Status

Teach-In-Status can be read at any time for verification.

	Teach	Flags			Teach	State	
SF	22	SI	⊇1				
TP2	TP1	TP2	TP1				
Examp " 0 " = T not set succes	le for: P1 of S or not ssfully s	SP2 et		0 = ID $1 = SF$ $2 = SF$ $3 = SF$ $4 = W$ $5 = BU$	LE P1 SUC P2 SUC P12 SUC AIT FOF JSY	CESS CESS CCESS R COMI	MAND
" 1 " = TP1 of SP2 successfully set			6 = re: 7 = EF	served RROR			

Instructions

Single Value Teach is explained for SP1 as an example. The same sequence can be applied for SP2 with the corresponding instruction set.

Precondition

Sensor is installed, aligned, and operated in IO-Link mode.

Procedure

- **1.** Align sensor with object.
- 2. Start Teach-In SP1:
 - Send System command 0x41 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x41	SP1 Single Value Teach

- **3.** Remove object from the beam.
- **4.** Store and accept Setpoint SP1: Send System command 0x40 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x40	Teach Apply

 Verify correct acceptance of SP1. Read and verify parameter Teach-In Status with Index 0x003B.

Access	Index	Value	Meaning	Result
R	R 0x003B 0x0		SP1 accepted successfully. Teach-In State = SP1 SUCCESS (0x01)	Teach-In successful
		0x07	Teach-In State = ERROR	Back to Step 2

Static Teach-In with two teach points

Principle

Setpoint SPy is set to mean value of the two teach points TP1 and TP2.

Function:	TP1 = Teach static object
	TP2 = Teach background
Result:	SPy between object and background

Two Value Teach

Teach-In-Status

Teach-In-Status can be read at any time for verification.

	Teach Flags				Teach State		
SP2 SP1							
TP2	TP1	TP2	TP1				
Example for: "0" = TP1 of SP2 not set or not successfully set "1" = TP1 of SP2				0 = ID 1 = SF 2 = SF 3 = SF 4 = W 5 = BU 6 = res 7 = EF	LE P1 SUC P2 SUC P12 SUC AIT FOF JSY served RROR	CESS CESS CCESS R COMI	MAND

Instructions

Two Value Teach is explained for SP1 as an example. The same sequence can be applied for SP2 with the corresponding instruction set.

Precondition

Sensor is installed, aligned, and operated in IO-Link mode.

Procedure

- **1.** Align sensor with object.
- 2. Set teach point TP1:

Send System command 0x43 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x43	SP1 Two Value Teach TP1

3. Verify correct setting of TP1. Read and verify parameter Teach-In Status with Index 0x003B.

Access	Index	Value	Meaning	Result
R	R 0x003B 0x		TP1 of SP1 set successfully Teach-In State = WAIT FOR COMMAND	Proceed with Step 4
		0x07	Teach-In State = ERROR	Back to Step 2

- Remove object from the beam. Optional: Move object within sensing range to teach second position.
- 5. SP1 set teach point 2 (TP2): Send System command 0x44 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x44	SP1 Two Value Teach TP2

6. Verify correct setting of TP2:

Read and verify parameter Teach-In Status with Index 0x003B.

Access	Index	Value	Meaning	Result
R	R 0x003B 0x34		TP2 of SP1 set successfully Teach-In State = WAIT FOR COMMAND	Proceed with Step 7
		0x07	Teach-In State = ERROR	Back to Step 2

7. Store and accept Setpoint SP1: Send System command 0x40 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x40	Teach Apply

8. Verify correct acceptance of SP1. Read and verify parameter Teach-In Status with Index 0x003B.

Access	Index	Value	Meaning	Result
R 0x003B		0x01	SP1 accepted successfully. Teach-In State = SP1 SUCCESS (0x01)	Teach-In successful
		0x07	Teach-In State = ERROR	Back to Step 2

Dynamic Teach-In of 1 setpoint. For SP1 only

Principle

Dynamic teach-in allows you to set the switching point without interrupting the process.

Typical application: Sensitivity setup to a process running perpendicular to the light beam of the sensor (Conveyor).

During the teach procedure, which begins with the Start command and ends with the Stop command, the sensor carries out measurements and determines the minimum and maximum of the obtained values. The *Teach Apply* command determines the switching point SP1.

Dynamic Teach

Teach-In-Status

Teach-In-Status can be read at any time for verification.

	Teach Flags				Teach State		
SP2 SP1							
TP2	TP1	TP2	TP1				
Example for: "0" = TP1 of SP2 not set or not successfully set				0 = ID 1 = SF 2 = SF 3 = SF 4 = W 5 = BL	LE P1 SUC P2 SUC P12 SU AIT FOF JSY	CESS CESS CCESS R COMI	MAND
" 1 " = TP1 of SP2 successfully set				6 = reserved 7 = ERROR			

Instructions

This Teach-In method is only applicable for SP1.

Precondition

Sensor is installed, aligned to the running process and operated in IO-Link mode.

Procedure

1. Start Dynamic Teach: Send System command 0x47 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x47	SP1 Dynamic Teach Start

- 2. Wait for a minimum of one process cycle is completed. Dynamic Teach is aborted in case no object has been detected within 1 minute or Teach has not been confirmed within 10 minutes Sensor keeps operating with last valid Setpoint settings.
- **3.** Stop Dynamic Teach:
 - Send System command 0x48 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x48	SP1 Dynamic Teach Stop

 Verify successful sensitivity setup: Read and verify parameter Teach-In Status with Index 0x003B.

Access	Index	Value	Meaning	Result
R	0x003B	0x34	Dynamic sensitivity setup of SP1 successful Teach-In State = WAIT FOR COMMAND	Proceed with Step 5
		0x07	Teach-In State = ERROR	Back to Step 1

5. Store and accept Setpoint SP1: Send System command 0x40 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x40	Teach Apply

 Verify correct acceptance of SP1: Read and verify parameter Teach-In Status with Index 0x003B.

Access	Index	Value	Meaning	Result
R	0x003B	0x01	SP1 accepted successfully. Teach-In State = SP1 SUCCESS (0x01)	Teach-In successful
		0x07	Teach-In State = ERROR	Back to Step 1

Dynamic Teach-In of both setpoints

Principle

Dynamic teach-in allows you to set the switching point without interrupting the process.

Typical application: Sensitivity setup to a moving object to be detected within a certain distance range (Window Mode).

During the teach procedure, which begins with the Start command and ends with the Stop command, the sensor carries out measurements and determines the minimum and maximum of the obtained values. The *Teach Apply* command determines the switching points SP1 and SP2.

Dynamic Teach

Teach-In-Status

Teach-In-Status can be read at any time for verification.

Teach Flags				Teach State			
SP2 SP1							
TP2	TP1	TP2	TP1				
Example for: " 0 " = TP1 of SP2 not set or not successfully set				0 = ID 1 = SF 2 = SF 3 = SF 4 = W, 5 = BU	LE P1 SUC P2 SUC P12 SU(AIT FOF JSY	CESS CESS CCESS R COMI	MAND
" 1 " = T succes	P1 of S	SP2 et		6 = reserved 7 = ERROR			

Instructions

Precondition

Sensor is installed, aligned to the moving target, and operated in IO-Link mode. Switchpoint Mode is configured as "Window Mode".

Procedure

1. Start Dynamic Teach: Send System command 0x47 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x47	SP1 Dynamic Teach Start

- 2. Wait for a minimum of one process cycle is completed. Dynamic Teach is aborted in case no object has been detected within 1 minute or Teach has not been confirmed within 10 minutes. Sensor keeps operating with last valid Setpoint settings.
- **3.** Stop Dynamic Teach:
 - Send System command 0x4A to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x4A	SP2 Dynamic Teach Stop

4. Verify successful sensitivity setup: Read and verify parameter Teach-In Status with Index 0x003B.

Access	Index	Value	Meaning	Result
R	0x003B	0xF4	Dynamic sensitivity setup of SP1 and SP2 successful. Teach-In State = WAIT FOR COMMAND	Proceed with Step 5
		0x07	Teach-In State = ERROR	Back to Step 1

5. Store and accept Setpoints SP1 and SP2: Send System command 0x40 to sensor.

Access	Index	Value	Remark
W	0x002 (2)	0x40	Teach Apply

6. Verify correct acceptance of SP1 and SP2: Read and verify parameter Teach-In Status with Index 0x003B.

Access	Index	Value	Meaning	Result
R	0x003B	0x03	SP1 and SP2 accepted successfully. Teach-In State = SP12 SUCCESS	Teach-In successful
		0x07	Teach-In State = ERROR	Back to Step 1

www.balluff.com

Headquarters

Germany

Balluff GmbH Schurwaldstrasse 9 73765 Neuhausen a.d.F. Phone + 49 7158 173-0 Fax +49 7158 5010 balluff@balluff.de

Global Service Center

Germany

Balluff GmbH Schurwaldstrasse 9 73765 Neuhausen a.d.F. Phone +49 7158 173-370 Fax +49 7158 173-691 service@balluff.de

US Service Center

USA Balluff Inc. 8125 Holton Drive Florence, KY 41042 Phone (859) 727-2200 Toll-free 1-800-543-8390 Fax (859) 727-4823 technicalsupport@balluff.com

CN Service Center

China

Balluff (Shanghai) trading Co., Itd. Room 1006, Pujian Rd. 145. Shanghai, 200127, P.R. China Phone +86 (21) 5089 9970 Fax +86 (21) 5089 9975 service@balluff.com.cn