

Instrukcja obsługi Przepływomierz elektromagnetyczny SM4x20 SM6x20 SM7x20 SM8x20 SM8x30 SM6x21 SM7x21 SM8x21 SM8x31

Spis treści

1	Wstęp 1.1 Symbolika 1.2 Zastosowane ostrzeżenia	4 5 5
2	Instrukcje bezpieczeństwa	5
3	Skrócona instrukcja 3.1 Funkcje urządzenia z ustawieniami fabrycznymi 3.2 Opcje ustawień	6 6 7
4	Zastosowanie zgodne z przeznaczeniem 4.1 Dyrektywa w sprawie urządzeń ciśnieniowych (PED) 4.2 Zastosowania	7 7 7
5	Działanie	8
	5.1 Przetwarzanie zmierzonych sygnałów	8
	5.2 Kierunek przepływu objętościowego	9
	5.2.1 Określanie kierunku przepływu objętościowego [Fdir]	9
	5.2.2 Wykrywanie kierunku przepływu objętosciowego [dir.F]	9
	5.3 Monitorowanie zuzywanej ilosci medium	.10
	5.3.1 Metoda pomiaru licznikow wielkości przepływu	.11
	5.3.2 Zerowanie rutytej ilećej medjum ovanelomi impuleovumi	10
	5.3.5 Monitorowanie zużytej ilości medium sygnałami impulsowymi 5.3.4 Monitorowanie zużytej ilości medium sygnałem przełaczajacym	. 15
	(wczęśniej nastawiony licznik)	13
	54 Wyiście czestotliwościowe	.15
	5.5 Wyiście analogowe	.17
	5.6 Wyjście przełączające	.19
	5.7 Tłumienie wartości mierzonej	.20
	5.8 Odcięcie niskiego przepływu	.20
	5.9 Opóźnienie rozruchu	.20
	5.10 Symulacja	.23
	5.11 Kolor znaków na wyświetlaczu	.24
	5.12 IO-Link	.25
	5.12.1 Funkcje dodatkowe przez interfejs IO-Link	.25
6	Montaż	.26
	6.1 Zalecane położenie montażowe	.27

6.2 Niezalecane położenie montażowe6.3 Uziemienie6.4 Montaż w rurociągach	27 28 29
7 Podłączenie elektryczne	
8 Wyświetlacz i przyciski sterujące	32
9 Menu	
9.1 Wyświetlanie wartości procesowej (RUN)	
9.2 Menu główne	34
9.3 Funkcje rozszerzone EF	35
9.4 Podmenu OUT1 i OUT2	
9.5 Podmenu CFG i TOTL	
9.6 Podmenu MEM i DIS	41
9.7 Podmenu COLR i SIM	43
10 Konfiguracja	45
11 Ustawianie parametrów	45
11.1 Ustawianie parametrów – informacje ogólne	
11.1.1 Wybór podmenu	46
11.1.2 Powrót do wyświetlania wartości procesowej (tryb RUN)	46
11.1.3 Blokowanie/odblokowywanie	46
11.1.4 Przekroczenie czasu programowania	47
11.2 Ustawienia monitorowania przepływu objętościowego	47
11.2.1 Monitorowanie wartości granicznej OUT1 lub OUT2 / fur	ıkcja
histerezy	
11.2.2 Monitorowanie wartości granicznej OUT1 lub OUT2 / fur	1kcja okna48
11.2.3 Sygnał przełączający kierunku przepływu objętościoweg	o OUT1 lub
OUT2	48
11.2.4 Sygnał częstotliwościowy przepływu objętościowego OU	JT148
11.2.5 Sygnał analogowy przepływu objętościowego OUT2	48
11.3 Ustawienia dla monitorowania zużytej ilości	49
11.3.1 Metoda pomiaru totalizerów	49
11.3.2 Monitorowanie ilości przez wyjście impulsowe OUT1	49
11.3.3 Monitorowanie ilości przez nastawiony licznik OUT1	49
11.3.4 Ręczne zerowanie licznika	49
11.3.5 Czasowe zerowanie licznika	50
11.3.6 Wyłączanie zerowania licznika	50

PL

11.3.7 Zerowanie licznika sygnałem zewnętrznym 11.3.8 Odczyt wartości zużycia 11.4 Ustawienia monitorowania temperatury	50 50 51
11.4.1 Monitorowanie wartości granicznej OUT1 lub OUT2 / funkcja histerezy 11.4.2 Monitorowanie wartości granicznej OUT1 lub OUT2 / funkcja okna	51 51
 11.4.3 Sygnał częstotliwościowy temperatury OUT1 11.4.4 Sygnał analogowy temperatury OUT2 11.5 Ustawienia użytkownika (opcjonalne) 	51 51 52
11.5.1 Język menu 11.5.2 Wyświetlacz standardowy 11.5.3 Standardowa jednostka miary dla przepływu objetościowego	52 52 53
11.5.4 Standardowa jednostka miary temperatury 11.5.5 Tłumienie wartości mierzonej	53 53
11.5.7 Logika wyjścia 11.5.8 Odcięcie niskiego przepływu	53 53 53
11.5.9 Kierunek przepływu objętościowego 11.5.10 Kolor znaków na wyświetlaczu 11.5.11 Zachowanie wviść w przypadku błedu	54 54 55
 11.5.12 Przywracanie ustawień fabrycznych 11.6 Funkcje diagnostyczne 11.6.1 Odczyt wartosci min. / maks 	55 56 56
11.6.2 Symulacja 12 Działanie urządzenia	56 56
13 Rozwiązywanie problemów	57
14 Konserwacja, naprawa i utylizacja	60
15 Ustawienia fabryczne	60

1 Wstęp

Szczegółowe instrukcje, dane techniczne, aprobaty i dodatkowe informacje można znaleźć za pomocą kodu QR na urządzeniu/opakowaniu lub na stronie www.ifm.com.

1.1 Symbolika

- Instrukcja
- > Reakcja, rezultat
- [...] Oznaczenie klawiszy i przycisków lub wskazań
- → Odnośnik

Ważna uwaga

Niestosowanie się do instrukcji obsługi może prowadzić do nieprawidłowego działania lub zakłóceń.

Informacja

Uwaga dodatkowa.

1.2 Zastosowane ostrzeżenia

UWAGA

Ostrzeżenie przed urazem ciała. Moga się pojawić niewielkie, odwracalne urazy.

2 Instrukcje bezpieczeństwa

- · Opisane urządzenie stanowi element składowy do integracji z systemem.
 - Za bezpieczeństwo systemu odpowiada jego producent.
 - Producent systemu zobowiązuje się do wykonania oceny ryzyka i sporządzenia dokumentacji zgodnie z wymogami prawnymi i normatywnymi, które następnie przekaże operatorowi i użytkownikowi systemu.
 Dokumentacja ta musi zawierać wszelkie niezbędne informacje i instrukcje bezpieczeństwa dla operatora, użytkownika oraz, jeżeli dotyczy, dla pracowników serwisu upoważnionych przez producenta systemu.
- Przed konfiguracją produktu proszę zapoznać się z tym dokumentem, a następnie przechowywać go przez cały okres użytkowania produktu.
- Produkt musi odpowiadać zamierzonym zastosowaniom i warunkom środowiskowym bez żadnych ograniczeń.
- Produkt należy stosować tylko zgodnie z jego przeznaczeniem (→ Zastosowanie zgodne z przeznaczeniem).
- Produkt należy stosować tylko z dozwolonymi mediami (→ Dane techniczne).

- W przypadku nieprzestrzegania instrukcji obsługi lub danych technicznych może dojść do uszkodzenia ciała i/lub mienia.
- Producent nie ponosi odpowiedzialności ani nie udziela gwarancji w przypadku nieuprawnionej ingerencji w produkt lub jego nieprawidłowego użytkowania.
- Montaż, połączenie elektryczne, konfiguracja, eksploatacja i konserwacja produktu muszą być wykonane przez wykwalifikowanych pracowników upoważnionych przez użytkownika maszyny.
- Chronić urządzenia i kable przed uszkodzeniem.

3 Skrócona instrukcja

W przypadku użycia urządzenia z ustawieniami fabrycznymi przepływ objętościowy jest monitorowany sygnałem przełączającym i sygnałem analogowym.

Na wyświetlaczu można odczytać wartości procesowe przepływu objętościowego i temperatury, wskazania miernika (wartości bieżące i zapisane) oraz komunikaty o błędach.

Wszystkie wartości procesowe i komunikaty są dostępne za pośrednictwem interfejsu IO-Link niezależnie od konfiguracji wyjścia.

Model symulacji umożliwia uproszczoną konfigurację czujnika.

3.1 Funkcje urządzenia z ustawieniami fabrycznymi

Wyjście OUT1:

- Sygnał przełączający dla przepływu objętościowego (funkcja histerezy normalnie otwarte, PnP, SP1 i rP1 \rightarrow 15)
- Tłumienie wartości mierzonej 0,6 sekundy, brak opóźnienia rozruchu i minimalna wartość odcięcia przy niskim przepływie
- W przypadku awarii wyjście wyłącza się (OFF) Wyjście OUT2:
- Sygnał analogowy dla przepływu objętościowego (zakres pomiaru niewyskalowany)
- W przypadku awarii sygnał analogowy ustawia się na 3,5 mA Wyświetlacz:
- Tekst po angielsku, kolor znaków czarny/biały
- 6

- Jednoczesne wyświetlanie bieżących wartości procesowych dla przepływu objętościowego i temperatury oraz licznika ilościowego
- Niska częstotliwość odświeżania, jasność wyświetlacza 75%

3.2 Opcje ustawień

- Funkcje wyjść OUT1 i OUT2 (temperatura lub przepływ objętościowy; przełączanie, impulsy, częstotliwość, sygnał analogowy, funkcja totalizera)
- Odwrócenie kierunku przepływu objętościowego, monitorowanie przepływu objętościowego
- Czasy reakcji przy pomiarze przepływu objętościowego (tłumienie wartości mierzonej, opóźnienie rozruchu, odcięcie przy niskim przepływie)
- · Zachowanie wyjść w przypadku błędu
- Standardowe widoki wyświetlacza (jednostka miary, wartości procesowe, licznik ilościowy, częstotliwość odświeżania, obrót, jasność, zmiana koloru znaków zależnie od wartości procesowej)

4 Zastosowanie zgodne z przeznaczeniem

Urządzenie monitoruje media płynne. Wykrywa prędkość przepływu, natężenie przepływu (ilość/czas przepływu), ilość zużytego medium oraz jego temperaturę.

4.1 Dyrektywa w sprawie urządzeń ciśnieniowych (PED)

Te urządzenia są zgodne z dyrektywą w sprawie urządzeń ciśnieniowych oraz zostały zaprojektowane i wyprodukowane dla płynów grupy 2 zgodnie z przyjętymi zasadami dobrej praktyki w dziedzinie projektowania.

Używanie płynów grupy 1 na życzenie.

4.2 Zastosowania

Ciecze przewodzące o następujących właściwościach:

- Przewodność: ≥ 20 µS/cm
- Lepkość: < 70 mm²/s w temp. 40°C; < 70 cSt w temp. 104°F

To produkt klasy A. Ten produkt może wywoływać zakłócenia radiowe w strefach zamieszkałych.

 W razie konieczności należy podjąć odpowiednie czynności w zakresie ekranowania zgodnie z zasadami kompatybilności elektromagnetycznej (EMC).

5 Działanie

- Urządzenie służy do wykrywania przepływu objętościowego na zasadzie pomiaru elektromagnetycznego.
- Jako dodatkową wartość procesową urządzenie wykrywa temperaturę medium w przepływie objętościowym.
- Urządzenie wyposażono w interfejs IO-Link.
- · Urządzenie wyświetla aktualne wartości procesowe.
- Urządzenie posiada wiele funkcji auto diagnostycznych
- · Tryb symulacji umożliwia uproszczoną konfigurację czujnika.

5.1 Przetwarzanie zmierzonych sygnałów

Urządzenie generuje 2 sygnały wyjściowe zgodnie z ustawieniem parametrów: OUT1: 9 możliwości wyboru

- Sygnał przełączający dla przepływu objętościowego
- Sygnał przełączający dla temperatury
- Sygnał przełączający dla kierunku przepływu objętościowego
- Sygnał przełączający dla wcześniej nastawionego licznika
- Sygnał impulsowy dla licznika ilości
- Sygnał częstotliwościowy dla przepływu objętościowego
- Sygnał częstotliwościowy dla temperatury
- IO-Link
- OFF (WYŁ.) (wyjście przełączone na wysoką impedancję)

OUT2: 7 możliwości wyboru

- Sygnał przełączający dla przepływu objętościowego
- Sygnał przełączający dla temperatury
- Sygnał przełączający dla kierunku przepływu objętościowego
- Sygnał analogowy dla przepływu objętościowego
- Sygnał analogowy dla temperatury
- Wejście sygnału zewnętrznego zerowania licznika (InD)
- OFF (wyjście przełączone na wysoką impedancję)

5.2 Kierunek przepływu objętościowego

Oprócz prędkości przepływu i [natężenia] przepływu objętościowego urządzenie wykrywa kierunek przepływu objętościowego.

5.2.1 Określanie kierunku przepływu objętościowego [Fdir]

Na urządzeniu znajduje się strzałka z napisem "kierunek przepływu", która wskazuje dodatni kierunek przepływu. Kierunek przepływu objętościowego można odwrócić (\rightarrow 11.5.9).

 Za pomocą dołączonej etykiety oznaczyć zmieniony kierunek przepływu objętościowego (nowy dodatni kierunek przepływu).

 Przepływ objętościowy...
 Wyświetlacz wartości procesowych

 odpowiada zaznaczonemu kierunkowi przepływu objętościowego
 + (dodatni)

 przeciwnie do oznaczonego kierunku przepływu objętościowego
 - (ujemny)

5.2.2 Wykrywanie kierunku przepływu objętościowego [dir.F]

Gdy funkcja [dir.F] jest uruchomiona (\rightarrow 11.2.5), sygnał przełączający wskazuje kierunek przepływu objętościowego.

Wyjście jest włączone do momentu, aż przepływ objętościowy nie spadnie poniżej ustawionej minimalnej wielkości przepływu w kierunku ujemnym (- LFC) (1). Następnie stosują się poniższe zasady:

- Wyjście włącza się (ON), gdy przepływ objętościowy przekroczy + LFC (2).
- Wyjście wyłącza się (OFF), gdy przepływ objętościowy wynosi poniżej LFC (3).

PL

Rys. 1: Monitorowanie kierunku przepływu objętościowego sygnałami przełączającymi

- + Q : Przepływ objętościowy w kierunku dodatnim
- Q : Przepływ objętościowy w kierunku ujemnym
- + LFC: Minimalny przepływ objętościowy (odcięcie przy niskiej wartości przepływu) w kierunku dodatnim
- LFC : Minimalny przepływ objętościowy (odcięcie przy niskiej wartości przepływu) w kierunku ujemnym
- $LFC \rightarrow 5.8$ Odcięcie niskiego przepływu

Dodatni kierunek przepływu objętościowego = zaznaczony kierunek przepływu, z ustawieniem fabrycznymi, oznaczony strzałką na urządzeniu lub po zmianie za pomocą [Fdir], oznaczony etykietą dołączoną do urządzenia (\rightarrow 5.2.1).

5.3 Monitorowanie zużywanej ilości medium

W urządzeniu zastosowano trzy wewnętrzne liczniki ilości (= totalizery) Totalizery ciągle sumują zużytą wielkość i podają trzy wartości procesowe w postaci parametrów [Vol.1], [Vol.2] i [Vol.L]:

Totalizer	Wartość procesowa	Dostęp do odczytu przez IO-Link
Vol.1	totalizer 1	cykliczny
Vol.2	totalizer 2	acykliczny
Vol.L	Totalizer w całym cyklu życia urządzenia (= licznik odczytujący przez cały okres eksploatacji urządzenia)	acykliczny

Totalizery sumują wyłącznie wielkości przepływu objętościowego przekraczające wartość LFC \rightarrow 5.8 Odcięcie niskiego przepływu.

Metodę pomiaru dla totalizerów Vol.1 i Vol.2 można ustawić tak, aby wartości przepływu objętościowego były ignorowane, albo odejmowane lub sumowane w przypadku ujemnego kierunku przepływu objętościowego (\rightarrow 5.3.1).

Nie można ustawić metody pomiaru Vol.L. Sumuje wszystkie wielkości przepływu objętościowego niezależnie jego kierunku.

Wartości procesowe licznika wielkości (totalizera) można wyświetlić (\rightarrow 11.3.8) lub odczytać na interfejsie IO-Link.

Do kontroli zużytej ilości medium (czyli wielkości przepływu) można skorzystać z sygnałów impulsowych (wyjście impulsowe) lub z sygnału przełączającego (nastawiony licznik).

ightarrow 5.3.3 Monitorowanie zużytej ilości medium sygnałami impulsowymi

 \rightarrow 5.3.4 Monitorowanie zużytej ilości medium sygnałem przełączającym (wcześniej nastawiony licznik)

5.3.1 Metoda pomiaru liczników wielkości przepływu

Podczas sumowania zużytej ilości medium liczniki wielkości przepływu uwzględniają kierunek przepływu objętościowego (→ Rys. 2). Za pomocą parametrów [FPro1] i [FPro2] można zdefiniować następujące metody pomiaru:

[FPro1] [FPro2]*	Metoda pomiaru
0+	Podczas sumowania urządzenie nie uwzględnia wielkości ujemnego przepływu objętościowego (czyli przeciwnie do zaznaczonego kierunku przepływu).
-+	Urządzenie odejmuje wielkości ujemnego przepływu objętościowego od zużytej ilości.
++	Urządzenie sumuje wszystkie wielkości przepływu objętościowego niezależnie od jego kierunku.

* [FPro1] = metoda pomiaru dla totalizera Vol.1

[FPro2] = metoda pomiaru dla totalizera Vol.2

Rys. 2: Uwzględnianie kierunku przepływu objętościowego podczas sumowania zużytej ilości medium

- + Q = wielkość przepływu objętościowego w kierunku dodatnim
- Q = wielkość przepływu objętościowego w kierunku ujemnym
 - V = bezwzględna wielkość przepływu objętościowego (= suma wielkości ujemnego i dodatniego przepływu objętościowego)
- Kierunek przepływu objętościowego zmienia się na ujemny
- Kierunek przepływu objętościowego zmienia się na dodatni

Przy zmianie kierunku przepływu urządzenie uwzględnia minimalną wielkość przepływu objętościowego: - LFC w kierunku ujemnym; + LFC w kierunku dodatnim (\rightarrow 5.2.2).

5.3.2 Zerowanie licznika

Istnieją różne sposoby zerowania liczników wielkości przepływu.

- \rightarrow 11.3.4 Ręczne zerowanie licznika
- \rightarrow 11.3.5 Czasowe zerowanie licznika
- \rightarrow 11.3.7 Zerowanie licznika sygnałem zewnętrznym
- \rightarrow Zerowanie licznika przez interfejs IO-Link

Jeżeli licznik wielkości przepływu nie zostanie zerowany jedną z powyższych metod, po przekroczeniu maksymalnej możliwej do wyświetlenia wielkości przepływu (przepełnienie) nastąpi zerowanie automatyczne.

Nie można wyzerować całkowitego odczytu licznika [Vol.L].

Licznik zapisuje zsumowaną wielkość przepływu co kilka sekund. Po wystąpieniu awarii zasilania wartość ta jest dostępna jako aktualne zliczenie miernika. W przypadku wyboru zerowania z ustawieniem czasowym urządzenie zapisuje również czas, jaki upłynął od ustawionego czasu zerowania. Dlatego użytkownik może utracić dane maksymalnie z kilku sekund pracy.

5.3.3 Monitorowanie zużytej ilości medium sygnałami impulsowymi

Każdorazowo po osiągnięciu wielkości przepływu (wartości impulsu) zadanej parametrem [ImPS] wyjście wysyła sygnał impulsowy. Sygnał impulsowy powoduje krótkie włączenie i ponowne wyłączenie wyjścia. Diody LED stanu przełączenia w urządzeniu nie wyświetlają operacji przełączania.

Sygnały impulsowe są niedostępne przez IO-Link.

5.3.4 Monitorowanie zużytej ilości medium sygnałem przełączającym (wcześniej nastawiony licznik)

Po osiągnięciu wielkości przepływu zadanej parametrem [ImPS] wyjście wysyła sygnał przełączający. Wyjście pozostaje włączone do momentu zerowania licznika. Po zresetowaniu totalizera pomiar rozpoczyna się ponownie.

Dokładność pomiaru zużytej ilości medium zależy od dokładności pomiaru przepływu objętościowego.

Ustawienie [rTo1] decyduje, kiedy wyjście przełącza się i kiedy następuje reset totalizera Vol.1:

[rTo1]	Wyjście	Zerowanie licznika
OFF	 Wyjście przełącza się po osiągnięciu wielkości przepływu zadanej parametrem [ImPS]. Wyjście pozostaje włączone do momentu zerowania licznika. 	 Nastawiony licznik zeruje się w momencie zerowania ręcznego, (→ 11.3.4) lub gdy następuje przekroczenie maksymalnego zakresu wyświetlania (przepełnienie).
1, 2, h 1, 2, d 1, 2, w	 Przełączenie wyjścia następuje tylko, gdy wielkość przepływu zadana parametrem [ImPS] zostanie osiągnięta w ustawionym czasie. Wyjście pozostaje włączone do momentu zerowania licznika. 	 Jeżeli wyjście nie zostanie przełączone, nastąpi zerowanie nastawionego licznika po przekroczeniu ustawionego czasu. Jeżeli przełączenie wyjścia nastąpi, nastawiony licznik zostanie wyzerowany wyłącznie w momencie zerowania ręcznego, (→ 11.3.4) lub gdy następuje przekroczenie maksymalnego zakresu wyświetlania (przepełnienie).

Ustawienie [rTo2] decyduje, kiedy nastąpi zerowanie totalizera Vol. 2. Ustawienie [rTo2] nie wpływa na działanie wyjścia:

[rTo2]	Wyjście	Zerowanie licznika
OFF	Brak wpływu na wyjście	 Nastawiony licznik zeruje się w momencie zerowania ręcznego, (→ 11.3.4) lub gdy następuje przekroczenie maksymalnego zakresu wyświetlania (przepełnienie).
[rTo2] = 1, 2, h 1, 2, d 1, 2, W	Brak wpływu na wyjście	 Nastawiony licznik zeruje się w momencie zerowania ręcznego, (→ 11.3.4) lub po przekroczeniu maksymalnego zakresu wyświetlania (przepełnienie) lub po przekroczeniu zadanego czasu.

5.4 Wyjście częstotliwościowe

Urządzenie wysyła sygnał częstotliwościowy proporcjonalny do przepływu objętościowego (prędkość lub objętości przepływu) lub do temperatury medium.

W zakresie pomiaru sygnał częstotliwościowy ma wartość od 0 do 10 kHz.

Sygnał częstotliwościowy jest skalowalny:

 [FrP1] określa sygnał częstotliwościowy w Hz, który urządzenie wysyła po osiągnięciu górnej wartości mierzonej (MEW lub FEP1).

Możliwość skalowania zakresu pomiaru:

 [FSP1] określa dolną wartość mierzoną, od której urządzenie wysyła sygnał częstotliwościowy.

Uwaga: [FSP1] nie można ustawić do pomiaru przepływu objętościowego.

 [FEP1] określa górną wartość mierzoną, przy której urządzenie wysyła sygnał FrP1.

Minimalna różnica między [FSP1] i [FEP1]

= 20% wartości końcowej zakresu pomiaru.

Jeżeli wartość mierzona jest poza zakresem pomiaru, lub w przypadku wystąpienia wewnętrznego błędu, sygnał częstotliwościowy przyjmuje wartości wskazane na Rysunku 3.

W przypadku wartości mierzonych spoza zakresu pomiaru lub w przypadku błędu urządzenie wyświetla komunikaty (OL, cr.OL, Err; \rightarrow).

Sygnał częstotliwościowy w przypadku błędu można regulować (→ 11.5.11):

- [FOU] = On (Wł.) określa, że w przypadku błędu sygnał częstotliwościowy przechodzi do górnej wartości końcowej (130% FrP1).
- [FOU] = OFF określa, że w przypadku błędu sygnał częstotliwościowy wynosi 0 Hz.
- [FOU] = OU określa, że w przypadku błędu sygnał częstotliwości zachowuje się tak jak zdefiniowano bieżącymi parametrami.

Sygnały częstotliwościowe są niedostępne przez interfejs IO-Link.

Rys. 3: Charakterystyka wyjściowa wyjścia częstotliwościowego

- 1 Sygnał częstotliwościowy w kHz
- Mierzona wartość (przepływ objętościowy lub temperatura)
- 3 Zakres wyświetlacza
- 4 Zakres pomiaru
- 5 Skalowany zakres pomiaru
- MAW: Wartość początkowa zakresu pomiaru z nieskalowanym zakresem pomiaru (przy ustawieniu odcięcia niskiego przepływu dla Q: wyjście sygnału uruchamia się przy MAW + LFC \rightarrow 5.8.)
- MEW: Wartość końcowa zakresu pomiaru z nieskalowanym zakresem pomiaru
- FSP: Początkowa wartość wyjścia częstotliwościowego skalowanego zakresu pomiaru (tylko temperatura)
- FEP: Końcowa wartość wyjścia częstotliwościowego skalowanego zakresu pomiaru
- FrP: Częstotliwość sygnału dla górnej wartości mierzonej
- OL: Powyżej zakresu wyświetlacza
- cr.OL: Powyżej obszaru wykrywania (błąd)
- Err: Błąd czujnika

5.5 Wyjście analogowe

Urządzenie dostarcza sygnał analogowy proporcjonalny do przepływu objętościowego (prędkość lub objętość przepływu) lub do temperatury medium. W zakresie pomiaru sygnał analogowy pozostaje w zakresie od 4 do 20 mA. Możliwość skalowania zakresu pomiaru:

- [ASP2] określa mierzoną wartość, przy której sygnał wyjściowy wynosi 4 mA.
- [AEP2] określa mierzoną wartość, przy której sygnał wyjściowy wynosi 20 mA.

ĩ

Minimalna różnica między [ASP2] a [AEP2] = 20% wartości końcowej zakresu pomiaru.

Jeśli mierzona wartość znajduje się poza zakresem pomiaru lub w przypadku błędu wewnętrznego urządzenie wysyła sygnał prądowy przedstawiony na rysunku 4.

Dla wartości mierzonych poza zakresem wyświetlacza lub w przypadku błędu urządzenie wyświetla komunikaty (cr.UL, UL, OL, cr.OL, Err; \rightarrow).

Sygnał analogowy w przypadku błędu można regulować (\rightarrow 11.5.11):

- [FOU] = On (wł.) określa, że sygnał analogowy w przypadku błędu przechodzi do górnej wartości końcowej (21,5 mA).
- [FOU] = OFF określa, że sygnał analogowy w przypadku błędu przechodzi do dolnej wartości końcowej (3,5 mA).
- FOU] = OU określa, że w przypadku błędu sygnał analogowy zachowuje się tak jak zdefiniowano bieżącymi parametrami.

Rys. 4: Charakterystyka wyjścia analogowego wo normy IEC 60947-5-7.

- Svgnał analogowy
- 1 2 Mierzona wartość (przepływ objętościowy lub temperatura)
- 3 Strefa detekcii
- ă Zakres wyświetlacza
- 5 Zakres pomiaru
- 6 Wyskalowany zakres pomiaru
- Q: Przepływ objętościowy (ujemna wartość wielkości przepływu = przepływ objętościowy przeciwny do zaznaczonego kierunku przepływu).
- Τ· Temperatura
- MAW Wartość poczatkowa zakresu pomiaru przy nieskalowanym zakresie pomiaru. (Przy ustawieniu niskiego odcięcia dla Q: wyjście sygnału uruchamia się przy MAW + LFC \rightarrow 5.8.)
- MEW: Wartość końcowa zakresu pomiaru z nieskalowanym zakresem pomiaru
- ASP: Analogowy punkt początkowy przy skalowanym zakresie pomiaru
- AFP Analogowy punkt końcowy przy skalowanym zakresie pomiaru
- UI Poniżej zakresu wyświetlacza
- OL: Powyżej zakresu wyświetlacza
- cr.UL: Poniżei strefy detekcii (bład)

cr.OL: Powyżej obszaru wykrywania (błąd)

5.6 Wyjście przełączające

OUTx zmienia swój stan przełączenia, jeżeli wartość jest powyżej lub poniżej zadanych wartości granicznych przełączenia (prędkość przepływu lub objętość przepływu lub temperatura). Można wybrać funkcję histerezy lub okna. Przykład monitorowania przepływu objętościowego:

Rys. 5: funkcja histerezy SP = punkt przełączania rP = punkt zerowania HY = histereza Hno / Fno = NO (normalnie otwarty) Rys. 6: funkcja okna

FH = górna wartość graniczna

FL = dolna wartość graniczna

FE = okno

Hnc / Fnc = NC (normalnie zamknięty)

Gdy funkcja histerezy jest ustawiona, najpierw określa się punkt przełączenia (SP), a następnie punkt zerowania (rP), który musi mieć niższą wartość. Jeżeli zmieniony zostanie tylko punkt przełączania SP, punkt zerowania rP zmieni się automatycznie; różnica pozostaje stała.

ĩ

ຶ່ງ

Gdy ustawiona jest funkcja okna, histereza górnej wartości granicznej (FH) i dolnej wartości granicznej (FL) jest stała i wynosi 0,25% wartości końcowej zakresu pomiaru. Dzięki temu przy lekkich wahaniach przepływu objętościowego stan przełączenia wyjścia pozostaje niezmienny.

5.7 Tłumienie wartości mierzonej

Czas tłumienia [dAP] umożliwia ustawienie liczby sekund, po której sygnał wyjściowy osiągnie 63% wartości końcowej, jeśli wartość przepływu objętościowego nagle się zmieni. Ustawiony czas tłumienia stabilizuje wyjścia przełączające i analogowe, wyświetlacz oraz przesyłanie wartości procesowych przez interfejs IO-Link.

Czas tłumienia dodaje się do czasu reakcji czujnika (\rightarrow Dane techniczne).

Sygnały UL, cr.UL, OL i cr.OL (\rightarrow) określa się przy uwzględnieniu czasu tłumienia.

Czas tłumienia ma wpływ tylko na pomiar przepływu objętościowego.

5.8 Odcięcie niskiego przepływu

Funkcja odcięcia niskiego przepływu czyli low flow cut-off [LFC] umożliwia tłumienie niskich wartości przepływu objętościowego. Przepływ objętościowy poniżej wartości LFC czujnik ocenia jako zatrzymanie przepływu (Q = 0).

5.9 Opóźnienie rozruchu

Opóźnienie rozruchu [dSt] wpływa na wyjścia przełączające monitorowania przepływu objętościowego.

Jeżeli opóźnienie rozruchu jest włączone ([dSt] > 0), stosuje się następująca zasada: Niezwłocznie po przekroczeniu przez wielkość przepływu wartości LFC (\rightarrow 5.8), urzadzenie wykonuje następujące procesy:

- > Opóźnienie rozruchu jest aktywowane.
- Wyjścia przełączają się zgodnie z zaprogramowaniem: ZAMKNIĘTE (ON) dla funkcji normalnie otwarte (NO), OTWARTE (OFF) dla funkcji normalnie zamknięte (NC).

Po włączeniu opóźnienia rozruchu istnieją 3 możliwości:

- Przepływ objętościowy szybko rośnie i osiąga punkt przełączenia / prawidłowy zakres w ciągu [dSt].
- > Wyjścia pozostają włączone.
- Przepływ objętościowy rośnie powoli i nie osiąga punktu przełączenia / prawidłowego zakresu w ciągu [dSt].
- > Następuje zerowanie wyjść.

- 3. Przepływ objętościowy spada poniżej [LFC] w ciągu [dSt].
- > Zerowanie wyjść następuje natychmiast; [dSt] zostaje zatrzymane.

Rys. 7: dSt dla funkcji histerezy (przykład)

	Warunek	Reakcja
1	Wielkość przepływu Q osiąga FLC	dSt włącza się, wyjście włącza się
2	Upłynął czas dSt, Q osiągnął punkt przełączenia (SP)	Wyjście pozostaje włączone
3	Q poniżej SP, ale powyżej rP	Wyjście pozostaje włączone
4	Q poniżej rP	Następuje zerowanie wyjścia
5	Q ponownie osiąga LFC	dSt włącza się, wyjście włącza się
6	Upłynął czas dSt, Q nie osiągnął SP	Następuje zerowanie wyjścia
7	Q osiąga SP	Wyjście włącza się

Rys. 8: dSt dla funkcji okna (przykład)

	Warunek	Reakcja
1	Wielkość przepływu Q osiąga FLC	dSt biegnie, wyjście włącza się.
2	Upłynął czas dSt, Q osiągnął prawidłowy zakres	Wyjście pozostaje włączone
3	Q powyżej FH (wychodzi z prawidłowego zakresu)	Następuje zerowanie wyjścia
4	Q ponownie poniżej FH	Wyjście włącza się ponownie
5	Q poniżej FL (wychodzi z prawidłowego zakresu)	Następuje ponowne zerowanie wyjścia
6	Q ponownie osiąga LFC	dSt biegnie, wyjście włącza się
7	Upłynął czas dSt, Q nie osiągnął prawidło- wego zakresu	Następuje zerowanie wyjścia
8	Q osiąga prawidłowy zakres	Wyjście włącza się

5.10 Symulacja

Ta funkcja służy do symulacji wartości procesowych przepływu objętościowego, temperatury i wskazania licznika totalizera oraz do sprawdzania ich łańcucha sygnałowego.

Po ustawieniu parametrów cr.UL, UL, OL i cr.OL można symulować wartości procesowe, które wywołują komunikat o błędzie lub ostrzeżenie (\rightarrow).

Po uruchomieniu symulacji wartości totalizerów 1-3 zostają zamrożone, a totalizer poddawany symulacji zostaje ustawiony na wartość 0. Następnie symulowana wartość przepływu objętościowego wpływa na ten totalizer. Po zakończeniu symulacji urządzenie przywraca wartości początkowe totalizera.

Symulacja nie wpływa na bieżące wartości procesowe. Wyjścia działają zgodnie z wcześniejszymi nastawami.

Podczas symulacji oryginalna wartość totalizera pozostaje zapisana bez zmian, nawet jeżeli naprawdę występuje przepływ objętościowy.

Podczas symulacji nie ma dostępu do żadnego komunikatu o błędach dot. aktualnego zastosowania. Symulacja powoduje tłumienie takich komunikatów.

5.11 Kolor znaków na wyświetlaczu

Parametrami [coL.F], [coL.T] i [coL.V] użytkownik może ustawić kolor znaków na wyświetlaczu:

- Trwałe ustawienie koloru wyświetlacza:
 - bk/wh (czarno/biały)
 - yellow (żółty)
 - green (zielony)
 - red (czerwony)
- Zmiana koloru z czerwonego na zielony lub odwrotnie (Rys. 9):
 - r-cF (czerwony kolor wyświetlacza między wartościami granicznymi cFL... cFH)
 - G-cF (zielony kolor wyświetlacza między wartościami granicznymi cFL...cFH)

cFL.T = dolna wartość graniczna temperatury

cFL.F = dolna wartość graniczna przepływu objętościowego cFH.T = górna wartość graniczna temperatury cFH.F = górna wartość graniczna

przepływu objętościowego

MEW = wartość końcowa zakresu pomiaru

MAW = wartość poczatkowa zakresu

pomiaru

Rys. 9: Ustawianie koloru dla funkcji okna

Wartości graniczne można wybierać dowolnie w zakresie pomiaru i są one niezależne od funkcji wyjść ustawionych dla OUT1 i OUT2.

5.12 IO-Link

To urządzenie wyposażono w interfejs komunikacyjny IO-Link umożliwiający bezpośredni dostęp do danych procesowych i diagnostycznych. Ponadto istnieje możliwość ustawiania parametrów urządzenia w trakcie pracy. Obsługa urządzenia poprzez interfejs IO-Link wymaga modułu master IO-Link.

Mając do dyspozycji komputer, odpowiednie oprogramowanie IO-Link oraz kabel adaptera IO-Link, można komunikować się z urządzeniem nawet wtedy, gdy system nie pracuje.

Pliki IODD niezbędne do konfiguracji jednostki, szczegółowe informacje o strukturze danych procesowych, informacje diagnostyczne, adresy parametrów i niezbędne informacje dotyczące wymaganego sprzętu i oprogramowania IO-Link można znaleźć pod adresem www.ifm.com.

Interfejs IO-Link zapewnia następujące funkcje dodatkowe za pośrednictwem odpowiedniego sprzętu i oprogramowania:

- Zdalne ustawianie parametrów urządzenia
- Odporna na zakłócenia transmisja sygnału bez strat wartości mierzonej
- Przesyłanie ustawień parametrów do urządzenia po wymianie lub innych urządzeń tego samego typu
- Jednoczesne odczytywanie wszystkich wartości procesowych (przepływ objętościowy, temperatura, totalizer), binarnych sygnałów przełączających i stanu urządzenia
- Wszechstronne wyświetlanie komunikatów o błędach i zdarzeniach (zdarzenia)
- Rejestrowanie bez zapisywania na papierze zestawów parametrów, wartości procesowych i informacji diagnostycznych

5.12.1 Funkcje dodatkowe przez interfejs IO-Link

Poniższe funkcje są dostępne wyłącznie przez interfejs IO-Link:

Funkcja	Wyjaśnienie
Flash ON /	Standardowe polecenie dot. znajdowania czujnika w układzie.
Flash OFF	Po włączeniu:
(Miganie WŁ./	 Diody LED stanu przełączenia migają.
VV 11.)	> Wyświetlacz: "IO-Link" (zielony, miga)

Funkcja	Wyjaśnienie
Flow Override (Pominięcie	Po włączeniu: symulacja zatrzymania przepływu objętościowego (Q = 0)
przepływu)	 > Wszystkie wyjścia działają jak przy zatrzymaniu przepływu objętościowego.
	Podczas symulacji oryginalna wartość totalizera pozostaje zapisana bez zmian, nawet jeżeli naprawdę występuje przepływ objętościowy.
Lock via system (Blokada systemowa)	Po włączeniu: przyciski parametryzacji zablokowane przez oprogramowanie do parametryzacji, zmiana parametrów odrzucona

6 Montaż

Jeżeli temperatura medium przekracza 50°C (122°F), części obudowy mogą rozgrzewać się powyżej 65°C (149°F).

- > Ryzyko poparzeń.
- Należy chronić obudowę przed kontaktem z substancjami łatwopalnymi i niezamierzonym wpływem otoczenia.
- Nakleić odpowiednią etykietę ostrzegawczą na kabel czujnika.

Przed montażem sprawdzić, czy w układzie nie ma ciśnienia.

Należy sprawdzić szczelność instalacji w miejscu montażu urządzenia.

Urządzenie można montować w każdej orientacji pod warunkiem spełnienia następujących wymagań:

- W układzie nie występują pęcherzyki powietrza.
- Rurociąg jest zawsze całkowicie wypełniony.

Odcinki odprężające po stronie wlotowej i wylotowej czujnika nie są konieczne.

6.1 Zalecane położenie montażowe

- ► Urzadzenie należy zamontować w taki sposób, aby rura w której dokonuje się pomiaru była zawsze całkowicie napełniona.
- Montaż przed rurą wznoszącą lub na rurze wznoszącej.

6.2 Niezalecane położenie montażowe

6.3 Uziemienie

!

W przypadku montażu w nieuziemionej instalacji wodociągowej (np. z rur z tworzywa sztucznego) urządzenie trzeba uziemić (uziemienie funkcjonalne).

Uchwyty uziemiające do konektorów M12 są dostępne jako akcesoria \rightarrow www.ifm.com.

6.4 Montaż w rurociągach

Urządzenia z gwintem G można montować w rurach za pomocą adapterów.

Informacje na temat dostępnych akcesoriów montażowych pod adresem www.ifm. com.

Wymaganą poprawność mocowania urządzenia oraz szczelność połączeń zapewniają wyłącznie adaptery firmy ifm.

- 1. Nasmarować gwinty przyłącza procesowego, adaptera i czujnika. Użyć odpowiedniej pasty smarującej, zatwierdzonej do danego zastosowania.
- 2. Wkręcić adapter (B) do wnętrza rury (A).
- 3. Umieścić uszczelki (C) i zamontować urządzenie zgodnie z zaznaczonym kierunkiem przepływu.
- 4. Skręcić adapter (B) z przyłączami procesowymi (D) ciasno ręcznie.
- 5. Dokręcić dwa adaptery w przeciwnym kierunku:
 - moment dokręcenia DN15...DN25: 30 Nm
 - moment dokręcenia DN6: 15 Nm

Po zamontowaniu urządzenia na pomiar mogą wpływać pęcherzyki powietrza znajdujące się w instalacji.

 Środek zaradczy: Po zakończeniu montażu przepłukać układ, aby go odpowietrzyć.

7 Podłączenie elektryczne

!

Urządzenie musi zostać podłączone przez wykwalifikowanego elektryka. Należy zapewnić zasilanie zgodne z EN 50178, SELV, PELV.

- Odłączyć zasilanie.
- Podłączyć urządzenie w sposób następujący:

Kolory zgodnie z DIN EN 60947-5-2 BK: czarny; BN: brązowy; BU: niebieski; WH: biały

Pin	Podłączenie
4 (OUT1)	 sygnał przełączający dla przepływu objętościowego sygnał przełączający dla temperatury sygnał przełączający dla kierunku przepływu objętościowego sygnał przełączający dla wcześniej nastawionego licznika sygnał impulsowy dla licznika ilości sygnał częstotliwościowy dla przepływu objętościowego sygnał częstotliwościowy dla temperatury IO-Link OFF
2 (OUT2/InD)	 sygnał przełączający dla przepływu objętościowego sygnał przełączający dla temperatury sygnał przełączający dla kierunku przepływu objętościowego sygnał analogowy dla przepływu objętościowego sygnał analogowy dla temperatury wejście sygnału zewnętrznego zerowania licznika (InD) OFF

Przykładowe obwody:

8 Wyświetlacz i przyciski sterujące

1 i 2: Diody LED stanu przełączenia

- LED 1 = stan przełączenia OUT1 (zapala się, kiedy przełączane jest wyjście 1)
- LED 2 = stan przełączenia OUT2 (zapala się, kiedy przełączane jest wyjście 2)

3: Wskazanie TFT

- Wskazanie bieżących wartości procesowych (przepływ objętościowy, temperatura, totalizer)
- · Wskazanie parametrów i ich wartości

4: Przyciski [▲] i [♥]

- · Wybór parametru
- · Zmiana wartości parametru (wcisnąć przycisk i przytrzymać)
- Przełączanie wyświetlania wartości procesowej w normalnym trybie pracy (tryb RUN)
- Blokada/odblokowanie (przyciski naciśnięte jednocześnie i przytrzymane dłużej niż 10 s)

5: Przycisk [•] = Enter

- Przełączanie z trybu RUN do menu głównego
- Przełączanie do trybu ustawień
- · Zastosowanie ustawionej wartości parametru

Podświetlenie wyświetlacza:

- Temperatura urządzenia > 70°C: automatyczne zmniejszanie jasności.
- Temperatura urządzenia ≥ 100°C: automatyczne wyłączenie wyświetlacza.

9 Menu

9.1 Wyświetlanie wartości procesowej (RUN)

Podczas eksploatacji można wybrać trzy wskazania wartości procesowej:

- ► Nacisnąć przycisk [▲] lub [▼].
- Wyświetlacz przełącza się między wskazaniem standardowym a dwoma innymi widokami.
- > Po 30 s urządzenie powraca do wyświetlacza standardowego.

- 1: Wyświetlacz standardowy ustawiony parametrem [diS.L] (\rightarrow 11.5.2)
- 2: Przegląd wszystkich wartości procesowych
- 3: Przegląd wartości totalizera

9.2 Menu główne

Wyjaśnienie parametrów \rightarrow 9.4 Podmenu OUT1 i OUT2

9.3 Funkcje rozszerzone EF

Parametr	Wyjaśnienie i opcje ustawień
rES	Przywracanie ustawień fabrycznych
Informacje	Wyświetlanie informacji o urządzeniu
OUT1	Wyjście konfiguracyjne 1
OUT2	Wyjście konfiguracyjne 2
CGF	Podstawowe ustawienia konfiguracji
TOTL	Wyświetlanie wartości totalizera
MEM	Wyświetlanie min./maks. wartości procesowych
DIS	Konfiguracja widoku wyświetlacza
COLR	Konfiguracja koloru wyświetlacza
SIM	Konfiguracja trybu symulacji

9.4 Podmenu OUT1 i OUT2

Wyjaśnienie podmenu OUT1

Parametr	Wyjaśnienie i opcje ustawień
SEL1	Standardowa mierzona zmienna do oceny przy OUT1: FLOW (przepływ objętościowy) lub TEMP (temperatura)
ou1	Funkcja wyjścia dla OUT1: • Przepływ objętościowy: Hno, Hnc, Fno, Fnc, ImP, OFF, FRQ, dir.F • Temperatury: Hno, Hnc, Fno, Fnc, OFF, FRQ
	Hno = sygnał przełączający z funkcją histerezy normalnie otwarty Hnc = sygnał przełączający z funkcją histerezy normalnie zamknięty Fno = sygnał przełączający z funkcją okna normalnie otwarty Fnc = sygnał przełączający z funkcją okna normalnie zamknięty ImP = monitorowanie zużytej ilości (funkcja totalizera) OFF = wyjście WYŁ. (wysoka impedancja) FRQ = sygnał częstotliwościowy dir.F = wykrywanie kierunku przepływu objętościowego
SP1	Punkt przełączenia dla OUT1
rP1	Punkt zerowania dla OUT1
FH1	Górna wartość graniczna dla OUT1
FL1	Dolna wartość graniczna dla OUT1
ImPS	Wartość impulsu = wielkość przepływu, przy której urządzenie dostarcza 1 impuls.
ImPR	Konfiguracja wyjścia do monitorowania zużytej ilości: YES (TAK) (sygnał impulsowy), no (nie) (sygnał przełączający).
FSP1	Punkt początkowy dla OUT1, tylko dla SEL1 = TEMP (temperatura)
FEP1	Punkt końcowy dla OUT1
FrP1	Częstotliwość dla punktu końcowego FEP1 na OUT1
FOU1	 Stan OUT 1 w przypadku awarii wewnętrznej: OU = wyjście 1 przełącza się mimo awarii zgodnie z ustawieniem parametrami. On = wyjście włącza się (ON) / sygnał częstotliwościowy przechodzi do górnej wartości końcowej. OFF = wyjście wyłącza się (OFF) / sygnał częstotliwościowy przyjmuje wartość 0. Î FOU1 jest niedostępne, jeżeli ou1 = ImP.

Wyjaśnienie podmenu OUT2

Parametr	Wyjaśnienie i opcje ustawień
SEL2	Standardowa mierzona zmienna do oceny przy OUT2: FLOW (przepływ objętościowy) lub TEMP (temperatura)
ou2	Funkcja wyjścia dla OUT2: • Przepływ objętościowy: Hno, Hnc, Fno, Fnc, In.D, OFF, dir.F, I • Temperatury: Hno, Hnc, Fno, Fnc, OFF, I
	Hno = sygnał przełączający z funkcją histerezy normalnie otwarty Hnc = sygnał przełączający z funkcją histerezy normalnie zamknięty Fno = sygnał przełączający z funkcją okna normalnie otwarty Fnc = sygnał przełączający z funkcją okna normalnie otwarty In.D = wejście sygnału zewnętrznego zerowania licznika OFF = wyście WYŁ. (wysoka impedancja) dir.F = sygnał analogowy 420 mA.
SP2	Punkt przełączenia dla OUT2
rP2	Punkt zerowania dla OUT2
FH2	Górna wartość graniczna dla OUT2
FL2	Dolna wartość graniczna dla OUT2
ASP2	Analogowy punkt początkowy dla OUT2
AEP2	Analogowy punkt końcowy dla OUT2
DIn2	Reset totalizera Vol.1 sygnałem zewnętrznym: +EDG, -EDG, HIGH, LOW
FOU2	 Stan OUT 2 w przypadku awarii wewnętrznej: OU = wyjście przełącza się mimo awarii zgodnie z ustawieniem parametrami. On = wyjście włącza się (ON) / sygnał analogowy przyjmuje wartość 21,5 mA. OFF = wyjście zeruje się (OFF) / sygnał analogowy przyjmuje wartość 3,5 mA.

9.5 Podmenu CFG i TOTL

Wyjaśnienie podmenu CFG

Parametr	Wyjaśnienie i opcje ustawień
uni.F	Jednostka standardowa dla przepływu objętościowego: m/s, l/min*, m³/h, gal/min, gal/h, floz/min, ft/s (*SM4: ml/min)
uni.T	Standardowa jednostka miary temperatury: C lub F
dAP	Tłumienie wartości mierzonej dla wyjścia przełączającego w sekundach (tylko przepływ objętościowy)
dSt	Opóźnienie rozruchu w sekundach (tylko przepływ objętościowy)
P-n	Logika wyjścia: PnP lub nPn
LFC	Odcięcie niskiego przepływu
Fdir	Kierunek przepływu objętościowego: + lub –

Wyjaśnienie podmenu TOTL

Parametr	Wyjaśnienie i opcje ustawień
rTo1	Zerowanie totalizera Vol.1: OFF, res.T lub czasowe
rTo2	Zerowanie totalizera Vol.2: OFF, res.T lub czasowe
FPro1	Metoda pomiaru totalizera Vol.1: 0+ lub – + lub ++
FPro2	Metoda pomiaru totalizera Vol.2: 0+ lub - + lub ++
Vol.1	Wyświetlanie aktualnego odczytu licznika totalizera 1
Vol.2	Wyświetlanie aktualnego odczytu licznika totalizera 2
Vol.L	Wyświetlanie aktualnego odczytu licznika przez cały okres eksploatacji

9.6 Podmenu MEM i DIS

Wyjaśnienie podmenu MEM

Parametr	Wyjaśnienie i opcje ustawień
Lo.F	Min. wartość wielkości przepływu mierzona w procesie
Hi.F	Maks. wartość wielkości przepływu mierzona w procesie
Lo.T	Min. wartość temperatury zmierzona podczas procesu
Hi.T	Maks. wartość temperatury zmierzona podczas procesu

Wyjaśnienie podmenu DIS

Parametr	Wyjaśnienie i opcje ustawień
LanG	Język menu: DE lub EN lub FR
diS.L	Wyświetlanie standardowej wartości procesowej (w wybranej standardowej jednostce miary) L1 = bieżąca wartość procesowa dla przepływu objętościowego L2.Temp = bieżąca wartość procesowa dla przepływu objętościowego i temperatury L2.Totl = bieżąca wartość procesowa dla przepływu objętościowego i totalizera Vol.1 L3 = bieżąca wartość procesowa dla przepływu objętościowego i temperatury oraz totalizera Vol.1
diS.U	Częstotliwość odświeżania wyświetlacza: d1 = wysoka d2 = średnia d3 = niska
diS.R	Obrót wyświetlacza: 0°, 90°, 180°, 270°
diS.B	Jasność wyświetlacza: 25%, 50%, 75%, 100%, OFF (wyświetlanie wartości mierzonej w trybie RUN wyłączone)

9.7 Podmenu COLR i SIM

Wyjaśnienie podmenu COLR

Parametr	Wyjaśnienie i opcje ustawień
coL.F	Kolor znaków na wyświetlaczu wartości przepływu objętościowego
cFH.F	Górna wartość graniczna zmiany koloru przy pomiarze przepływu objęto- ściowego
cFL.F	Dolna wartość graniczna zmiany koloru przy pomiarze przepływu objęto- ściowego
coL.T	Kolor znaków na wyświetlaczu wartości temperatury
cFH.T	Górna wartość graniczna zmiany koloru przy pomiarze temperatury
cFL.T	Dolna wartość graniczna zmiany koloru przy pomiarze temperatury
coL.V	Kolor znaków na wyświetlaczu wartości totalizera Vol.1
bk/wh	Zawsze czarny/biały
żółty	Zawsze żółty
zielony	Zawsze zielony
czerwony	Zawsze czerwony
r-cF	Kolor wyświetlacza czerwony między wartościami granicznymi cFLcFH, poza zakresem zmiana koloru na zielony
G-cF	Kolor wyświetlacza zielony między wartościami granicznymi cFLcFH, poza zakresem zmiana koloru na czerwony

Wyjaśnienie podmenu SIM

Parametr	Wyjaśnienie i opcje ustawień
S.FLW	Symulowana wartość przepływu objętościowego
S.TMP	Symulowana temperatura przepływu objętościowego
cr.UL	Wartość mierzona poniżej strefy detekcji $ ightarrow $ komunikat błędu
UL	Wartość mierzona poniżej zakresu wyświetlacza $ ightarrow$ ostrzeżenie
OL	Wartość mierzona powyżej zakresu wyświetlacza $ ightarrow$ ostrzeżenie
cr.OL	Wartość mierzona powyżej strefy detekcji $ ightarrow $ komunikat błędu
S.Tim	Czas symulacji w minutach
S.On	Stan symulacji: OFF, On (Wł.)

10 Konfiguracja

Po włączeniu zasilania i upływie czasu opóźnienia rozruchu ok. 5 s urządzenie znajduje się w trybie Run (= normalny tryb pracy). Urządzenie realizuje funkcje pomiarowe i oceny oraz generuje sygnały wyjściowe zgodnie z ustawionymi parametrami.

- W czasie opóźnienia rozruchu wyjścia są przełączane zgodnie z ustawieniami:
 - Włączone dla funkcji normalnie otwarte (Hno / Fno)
 - Wyłączone dla funkcji normalnie zamknięte (Hnc / Fnc)
 - ON (WŁ.) dla wykrywania kierunku przepływu (dir.F)
 - Wyłączone przy wyborze wyjście częstotliwościowe (FRQ)
 - OFF dla monitorowania zużytej ilości (ImP)
- Jeżeli wyjście 2 skonfigurowano jako analogowe, sygnał wyjściowy ma wartość 20 mA w czasie opóźnienia rozruchu.

11 Ustawianie parametrów

UWAGA

Jeżeli temperatura medium przekracza 50°C (122°F), części obudowy mogą rozgrzewać się powyżej 65°C (149°F).

- > Ryzyko poparzeń.
- Nie wolno dotykać urządzenia.
- Należy użyć narzędzia (np. długopisu) w celu przyciśnięcia przycisków.

Parametry można ustawić przed instalacją lub w trakcie pracy urządzenia.

Jeżeli parametry zostaną zmienione w czasie działania, wpłynie to na funkcjonowanie instalacji.

Upewnić się, że w instalacji nie wystąpią żadne usterki.

Podczas ustawienia parametrów urządzenie pozostaje w trybie pracy. Czujnik działa z niezmienionymi wartościami parametrów, dopóki wprowadzanie zmian nie zostanie zakończone.

Parametry można ustawiać także poprzez interfejs IO-Link.

11.1 Ustawianie parametrów – informacje ogólne

1. Przełączanie z trybu RUN do menu głównego	[•]
2. Wybrać żądany parametr	[▲] lub [▼]
3. Przełączanie do trybu ustawień	[•]
4. Zmiana wartości parametru	[▲] lub [▼] > 1 s
5. Zatwierdzenie ustawionej wartości parametru	[•]
6. Powrót do trybu RUN	> 30 sekund (przekroczenie czasu)

Jeżeli na wyświetlaczu pojawia się komunikat [Locked via Communication] (Zablokowane przez komunikację) przy próbie zmiany wartości parametru, komunikacja IO-Link jest aktywna (tymczasowa blokada).

บี

Jeżeli na wyświetlaczu pojawia się komunikat [Locked via system] (Zablokowane przez system), czujnik jest zablokowany na stałe przez oprogramowanie. Blokada może być zdjęta jedynie przez dedykowane oprogramowanie.

11.1.1 Wybór podmenu

- Nacisnąć przycisk [•], aby przełączyć wyświetlacz z wartości procesowej na menu główne.
- 2. Nacisnąć przycisk [▼], aby wybrać menu EF, a następnie nacisnąć [●].
- 3. Nacisnąć przycisk [▼], aby wybrać podmenu, a następnie nacisnąć [●].

11.1.2 Powrót do wyświetlania wartości procesowej (tryb RUN)

Istnieją 2 możliwości:

- 1. Odczekać 30 sekund (→ 11.1.4 Przekroczenie czasu programowania).
- Nacisnąć przycisk [▲] lub [▼], aby przejść na koniec menu i przełączyć na następne, wyższe menu.

11.1.3 Blokowanie/odblokowywanie

Urządzenie ma elektroniczną blokadę chroniącą przed niepożądaną zmianą ustawień. Ustawienia fabryczne: niezablokowany.

Blokowanie:

- ▶ Należy upewnić się, iż urządzenie znajduje się w normalnym trybie pracy.
- ► Nacisnąć jednocześnie przyciski [▲] i [▼] i przytrzymać przez 10 s, aż na wyświetlaczu pojawi się [▲ Set menu lock] (Ustaw blokadę menu).

Podczas pracy: Przy próbie zmiany wartości parametrów na wyświetlaczu pojawia się [🔒].

Odblokowanie:

- ▶ Należy upewnić się, iż urządzenie znajduje się w normalnym trybie pracy.
- Nacisnąć jednocześnie przyciski [▲] i [▼] i przytrzymać przez 10 s, aż na wyświetlaczu pojawi się [Reset menu lock].

Za pośrednictwem interfejsu IO-Link można zablokować przyciski ustawień funkcją [Lock via system] (Zablokuj przez system), aby uniemożliwić ustawianie parametrów w urządzeniu.

11.1.4 Przekroczenie czasu programowania

Jeśli podczas ustawiania parametrów żaden przycisk nie zostanie naciśnięty przez 30 s, urządzenie przejdzie w tryb pracy normalnej z niezmienionymi wartościami parametrów.

11.2 Ustawienia monitorowania przepływu objętościowego

11.2.1 Monitorowanie wartości granicznej OUT1 lub OUT2 / funkcja histerezy

Wybrać [uni.F] i ustawić jednostkę miary. Wybrać [SELx] i ustawić FLOW (przepływ). Wybrać [oux] i ustawić sygnał przełączający: - Hno = funkcja histerczy/normalnie otwarte	Menu OUTx: [SELx] [oux] [SPx]
Wybrać [SPx] i ustawić wartość, przy której wyjście przełączy się. Wybrać [rPx] i ustawić wartość, przy której wyjście wyłączy się.	נוראן

11.2.2 Monitorowanie wartości granicznej OUT1 lub OUT2 / funkcja okna

Wybrać [uni.F] i ustawić jednostkę miary. Wybrać [SELx] i ustawić FLOW (przepływ). Wybrać [oux] i ustawić sygnał przełączający: - Fno = funkcja okna / normalnie otwarte - Fnc = funkcja okna / normalnie zamkniete	Menu OUTx: [SELx] [oux] [FHx] [FLx]
Wybrać [FHx] i ustawić górną wartość graniczną sekcji okna. Wybrać [FLx] i ustawić dolną wartość graniczną sekcji okna.	

11.2.3 Sygnał przełączający kierunku przepływu objętościowego OUT1 lub OUT2

 Wybrać [SELx] i ustawić FLOW (przepływ). Wybrać [oux], a następnie wykrywanie kierunku przepływu dir.F Wyjście przełącza się w momencie odwrócenia kierunku przepływu objętościowego (→ 5.2.2). 	Menu OUTx: [SELx] [oux]
---	-------------------------------

11.2.4 Sygnał częstotliwościowy przepływu objętościowego OUT1

	Wybrać [uni.F] i ustawić jednostkę miary. Wybrać [SEL1] i ustawić wartość FLOW. Wybrać [ou1], a następnie sygnał częstotliwościowy: FRQ Wybrać [FEP1] i ustawić górną wartość przepływu objętościowego, przy	Menu OUT1: [SEL1] [ou1] [FEP1]
	której urządzenie podaje częstotliwość zadaną parametrem FrP1. Wybrać IFrP11 i ustawić częstotliwość	[FrP1]
-		1

11.2.5 Sygnał analogowy przepływu objętościowego OUT2

 Wybrać [uni.F] i ustawić jednostkę miary. Wybrać [SEL2] i ustawić wartość FLOW. Wybrać [ul2] a pastennie sygrad analogowy: I (4, 20 mA) 	Menu OUT2: [SEL2] [ou2]
 Wybrać [ASP] i ustawić wartość odpowiadającą 4 mA. Wybrać [AEP] i ustawić wartość odpowiadającą 20 mA. 	[ASP2] [AEP2]

11.3 Ustawienia dla monitorowania zużytej ilości

11.3.1 Metoda pomiaru totalizerów

 Wybrać [FPro1] i ustawić metodę pomiaru dla totalizera Vol.1. Wybrać [FPro2] i ustawić metodę pomiaru dla totalizera Vol.2. 	Menu TOTL: [FPro1]
 0+ = sumowanie tylko wartości dodatniego przepływu objętościowego -+ = sumowanie wartości wielkości przepływu z odpowiednim znakiem ++ = sumowanie wszystkich wartości przepływu objętościowego nieza- leżnie od jego kierunku 	[FPro2]

11.3.2 Monitorowanie ilości przez wyjście impulsowe OUT1

Wybrać [uni.F] i ustawić jednostke mjary.	Menu OUT1:
Wybrać [SEI 1] i ustawić wartość ELOW	ISEL 11
Wybrac [ou1] i ustawic wyjscie impulsowe: ImP	[ou1]
Wybrać [ImPS] i ustawić wartość impulsu (= wielkość przepływu, przy	[ImPS]
której urządzenie podaje impuls):	[ImPR]
 Nacisnąć przycisk [▲] lub [▼], aby wybrać zakres ustawień. 	- ,
 Krótko nacisnać przycisk [•]. aby zatwierdzić zakres ustawień. 	
3 Nacisnać przycisk [▲] lub [♥] aby ustawić wybrana wartość	
numeryczną.	
 Krótko nacisnąć przycisk [•], aby zastosować wartość. 	
Wybrać [ImPR] i ustawić YES.	

11.3.3 Monitorowanie ilości przez nastawiony licznik OUT1

►	Wybrać [uni.F] i ustawić jednostkę miary.	Menu OUT1:
►	Wybrać [SEL1] i ustawić wartość FLOW.	[SEL1]
►	Wybrać [ou1] i ustawić wyjście impulsowe: ImP	[ou1]
►	Wybrać [ImPS] i ustawić wielkość przepływu, przy której wyjście 1	[ImPS]
	przełączy się.	[ImPR]
►	Wybrać [ImPR] i ustawić no (nie).	

11.3.4 Ręczne zerowanie licznika

	Wybrać [rTo1] dla totalizera Vol.1 lub [rTo2] dla totalizera Vol.2 i ustawić rES.T.	Menu TOTL: [rTo1]
>	Wybrany totalizer zostanie wyzerowany.	[rTo2]

ΡI

11.3.5 Czasowe zerowanie licznika

	Wybrać [rTo1] dla totalizera Vol.1 lub [rTo2] dla totalizera Vol.2, a następnie ustawić wybraną wartość (częstotliwość w godzinach, dniach	Menu TOTL: [rTo1]
>	lub tygodniach). Wybrany totalizer zostanie automatycznie zresetowany zgodnie z zadaną wartością.	[rTo2]

11.3.6 Wyłączanie zerowania licznika

	Wybrać [rTo1] dla totalizera Vol.1 lub [rTo2] dla totalizera Vol.2 i ustawić OFF.	Menu TOTL: [rTo1]
>	Wybrany totalizer zostanie wyzerowany wyłącznie po przepełnieniu.	[rTo2]

11.3.7 Zerowanie licznika sygnałem zewnętrznym

	Wybrać [ou2] i ustav Wybrać [DIn2] i usta - HIGH (WYSOKI) = - LOW (NISKI) = - +EDG = EDG =	vić In.D. wić sygnał zerujący licznik: zerowanie poziomem wysokim zerowanie poziomem niskim zerowanie na zboczu narastającym zerowanie na zboczu opadającym	Menu OUT2: [ou2] [DIn2]
>	Totalizer Vol.1 zosta	nie wyzerowany.	
[Zewnętrzne zerowanie licznika jest możliwe tylko dla totalizera Vol.1.		

11.3.8 Odczyt wartości zużycia

•	Wybrać [Vol.1], [Vol.2] lub [Vol.L], aby wyświetlić odczyt odpowiedniego licznika: - [Vol.1] = aktualny odczyt licznika totalizera 1 - [Vol.2] = aktualny odczyt licznika totalizera 2 - [Vol.L] = aktualny odczyt licznika totalizera dla całego okresu eksplo- atacji urządzenia	Menu TOTL: [Vol.1] [Vol.2] [Vol.L]
---	---	---

11.4 Ustawienia monitorowania temperatury

11.4.1 Monitorowanie wartości granicznej OUT1 lub OUT2 / funkcja histerezy

Wybrać [uni.T] i ustawić jednostkę miary.	Menu OUTx:
Wybrać [SELx] i ustawić TEMP (przepływ).	[SELx]
Wybrać [oux] i ustawić sygnał przełączający:	[oux]
- Hno = funkcja histerezy/normalnie otwarte	[SPx]
 Hnc = funkcja histerezy/normalnie zamknięte 	[rPx]
Wybrać [SPx] i ustawić wartość, przy której wyjście przełączy się.	
Wybrać [rPx] i ustawić wartość, przy której wyjście zeruje się.	

11.4.2 Monitorowanie wartości granicznej OUT1 lub OUT2 / funkcja okna

►	Wybrać [uni.T] i ustawić jednostkę miary.	Menu OUTx:
	Wybrać [SELx] i ustawić TEMP (przepływ).	[SELx]
	Wybrać [oux] i ustawić sygnał przełączający:	[oux]
	- Fno = funkcja okna / normalnie otwarty	[FHx]
	 Fnc = funkcja okna / normalnie zamknięty 	[FLx]
	Wybrać [FHx] i ustawić górną wartość graniczną sekcji okna.	
►	Wybrać [FLx] i ustawić dolną wartość graniczną sekcji okna.	

11.4.3 Sygnał częstotliwościowy temperatury OUT1

 Wybrać [uni.T] i ustawić jednostkę miary. Wybrać [SEL1] i ustawić wartość TEMP. Wybrać [ou1], a następnie funkcję częstotliwościowa Wybrać [FSP1] i ustawić dolną wartość temperatury, urządzenie podaje sygnał częstotliwościowy. Wybrać [FEP1] i ustawić wartość temperatury, przył wyjściowy osiągnie czestotliwość ustawiona w parar 	: FRQ [ou1] od której [FEP1] tórej sygnał [FrP1] hetrze FrP1.	
wyjściowy osiągnie częstotliwość ustawioną w parar ▶ Wybrać [FrP1] i ustawić częstotliwość.	netrze FrP1.	

11.4.4 Sygnał analogowy temperatury OUT2

 Wybrać [uni.T] i ustawić jednostkę miary. Wybrać [SEI 2] i ustawić wartość TEMP 	Menu OUT2: [SEL2]
 Wybrać [ou2], a następnie sygnał analogowy: I (420 mA) 	[ou2]
 Wybrać [ASP] i ustawić wartość odpowiadającą 4 mA. 	[ASP2]
 Wybrać [AEP] i ustawić wartość odpowiadającą 20 mA. 	[AEP2]

PL

11.5 Ustawienia użytkownika (opcjonalne)

11.5.1 Język menu

► \ - -	Wybrać [LanG] i ustawić język menu: · DE = niemiecki · EN = angielski · FR = francuski	Menu DIS: [LanG]
---------------	---	---------------------

11.5.2 Wyświetlacz standardowy

 Wybrać [diš L1 = L2.Temp = L2.Totl = L3 = 	S.L] i ustawić wyświetlacz wartości procesowych: bieżąca wartość procesowa dla przepływu objętościowego bieżąca wartość procesowa dla przepływu objętościowego i temperatury bieżąca wartość procesowa dla przepływu objętościowego i totalizera Vol.1 bieżąca wartość procesowa dla przepływu objętościowego i temperatury oraz totalizera Vol.1	Menu DIS: [diS.L] [diS.U] [diS.R] [diS.B]			
 Wybrać [di3 - d1 = wys - d2 = śrec - d3 = nisk Wybrać [di3 0°, 90°, 18(Wybrać [di3 25%, 50%, Iub OFF (= w trybie pra wyłączonyr przyciskiem 	 i temperatury oraz totalizera Vol.1 Wybrać [diS.U] i ustawić częstotliwość odświeżania wyświetlacza: d1 = wysoka d2 = średnia d3 = niska Wybrać [diS.R] i ustaw orientację wyświetlacza: 0°, 90°, 180°, 270° Wybrać [diS.B] i ustawić jasność wyświetlacza: 25%, 50%, 75%, 100% lub OFF (= tryb oszczędzania energii. Wyświetlacz jest wyłączony w trybie pracy. Informacje o błędach są wyświetlacza dowolnym 				

11.5.3 Standardowa jednostka miary dla przepływu objętościowego

► Wybrać [uni.F] i ustawić jednostkę miary dla wyświetlacza standardowego (→ 11.5.2).					Menu CFG: [uni.F]					
	m/s	ml/min	l/min	m³/h	gal/min	gal/h	floz/min	ft/s		
SM4x	Х	Х		Х	Х	Х	Х	Х		
SM6/SM7/SM8	Х		Х	Х	Х	Х	Х	Х		
Przed konfiguracją wyjść ustawić [uni.F].										
Urządzeni jednostce	e wyśv miary,	vietla zu która za	żytą ilo pewnia	ość me a najwy	dium (cz /ższą do	yli odc kładno	zyt licznik sć.	ka) w		PI

11.5.4 Standardowa jednostka miary temperatury

Wybrać [uni.T] i ustawić jednostkę miary dla wyświetlacza standardowego (→ 11.5.2): °C lub °F.	Menu CFG: [uni.T]
Przed konfiguracją wyjść ustawić [uni.T].	

11.5.5 Tłumienie wartości mierzonej

 Wybrać [dAP] i ustawić stałą tłumie 	a w sekundach (wartość т 63%). Menu CFG: [dAP]
---	---

11.5.6 Opóźnienie rozruchu

 Wybrać [dSt] i ustawić opóźnienie przełączania w sekundach. [dSt] 	CFG:
---	------

11.5.7 Logika wyjścia

Wybrać parametr [P-n] i ustawić wartość na PnP lub nPn.	Menu CFG:
	[P-n]

11.5.8 Odcięcie niskiego przepływu

►	Wybrać [LFC] i ustawić wartość graniczną, poniżej której urządzenie	Menu CFG:
	ocenia przepływ objętościowy jako zatrzymany.	[LFC]

11.5.9 Kierunek przepływu objętościowego

►	Wybrać [Fdir] i ustawić kierunek przepływu objętościowego:	Menu CFG:
	+ = przepływ objętościowy w kierunku strzałki (= ustawienia fabryczne)	[Fdir]
	 – = przepływ objętościowy w kierunku przeciwnym do strzałki 	
	► Umieścić etykietę dołączoną do urządzenia na strzałce (→ 5.2.1)	

11.5.10 Kolor znaków na wyświetlaczu

	Wybrać [col temperatury na wyświetla	Menu COLR: [coL.F] [coL.T]			
	- bk/wh	[cFH.F]			
	- zony - zielonv	= zawsze zołty = zawsze zielony	[CFL.F]		
	- czerwony	= zawsze czerwony	[cFL.T]		
	- r-cF	 kolor wyświetlacza czerwony między wartościami 	[coL.V]		
		granicznymi cFLcFH, poza zakresem zmiana koloru na zielony			
	- G-cF	= kolor wyświetlacza zielony między wartościami			
		granicznymi cFLcFH, poza zakresem zmiana koloru na czerwony			
►	Wybrać [cFI	H.x] i [cFL.x], a następnie ustawić wartości graniczne dla			
	koloru okna:				
	- cFH.F = g	órna wartość graniczna przepływu objętościowego			
		olna wartość graniczna przepływu objętościowego			
	- cFI T = d	olna wartość graniczna temperatury			
	Wybrać [col	VI i ustawić kolor znaków dla totalizera Vol.1:			
	- bk/wh	= zawsze czarny/biały			
	- żółty	= zawsze żółty			
	- zielony	= zawsze zielony			
	- czerwony:	= zawsze czerwony			

11.5.11 Zachowanie wyjść w przypadku błędu

	Wybrać [FOU1] i ustawić zachowanie wyjścia 1 w przypadku błędu: Wyjście przełaczajace	Menu OUT1: [FOU1]
	 - On = Wyjście 1 włącza się (ON) w przypadku błędu (Wł.) 	Menu OUT2: [FOU2]
	 OFF = Wyjście 1 wyłącza się (OFF) w przypadku błędu OU = Wyjście 1 przełącza się mimo błędu zgodnie z zadanymi parametrami 	
	Wyjście częstotliwościowe	
	 - Ôn = Sygnał częstotliwościowy przechodzi do górnej wartości (Wł.) błędu (→ 5.4) 	
	 OFF = Sygnał częstotliwościowy przechodzi do dolnej wartości błędu (→ 5.4) 	
	- OU = Ten sygnał częstotliwościowy odpowiada wartości mierzonej	
►	Wybrać [FOU2] i ustawić zachowanie wyjścia 2 w przypadku błędu:	
	Wyjście przełączające	
	 - Ôn = Wyjście 2 włącza się (ON) w przypadku błędu (Wł.) 	
	 OFF = Wyjście 2 wyłącza się (OFF) w przypadku błędu 	
	 OU = Wyjście 2 przełącza się mimo błędu zgodnie z zadanymi parametrami 	
	Wyjście analogowe	
	 - Ôn = Sygnał analogowy przechodzi do górnej wartości błędu (→ (Wł.) 5.5) 	
	 - OFF = Sygnał analogowy przechodzi do dolnej wartości błędu (→ 5.5) 	
	- OU = Sygnał analogowy odpowiada mierzonej wartości.	
	Parametr [FOUx] jest niedostępny, jeżeli wybrano [ou1] = ImP (monitorowanie zużytej ilości medium). Urządzenie podaje impul- sy lub sygnały przełączające pomimo błędu.	

11.5.12 Przywracanie ustawień fabrycznych

 ▶ Wybrać [rES]. ▶ Krótko nacisnąć przycisk [●]. ▶ Nacisnąć i przytrzymać przycisk [▲] lub [▼]. > Wyświetli się []. ▶ Krótko nacisnąć przycisk [●]. > Urządzenie uruchomi się ponownie. 	Menu EF: [rES]
$\dot{\mathbb{I}} \rightarrow 15$ Ustawienia fabryczne. Zaleca się zanotowanie własnych ustawień przed wyzerowaniem.	

11.6 Funkcje diagnostyczne

11.6.1 Odczyt wartosci min. / maks.

 Wybrać [Lo.x] lub [Hi.x], aby wyświetlić najwyższą bądź najniższą zmierzoną wartość procesową: [Lo.F] = min. wartość objętości przepływu zmierzona podczas procesu [Hi.F] = maks. wartość objętości przepływu zmierzona podczas procesu [Lo.T] = min. wartość temperatury zmierzona podczas procesu [Hi.T] = maks. wartość temperatury zmierzona podczas procesu 	Menu MEM: [Lo.F] [Hi.F] [Lo.T] [Hi.T]
 Kasowanie pamięci: Wybrać [Lo.x] lub [Hi.x]. Nacisnąć i przytrzymać przyciski [▲] i [▼]. Wyświetli się []. Krótko nacisnąć przycisk [●]. Zaleca się wykasowanie pamięci w momencie, gdy urządzenie działa po raz pierwszy w normalnych warunkach pracy . 	

11.6.2 Symulacja

 Wybrać [S.FLW] i ustawić wartość objętości przepływu do symulacji. Wybrać [S.TMP] i ustawić czas symulacji w minutach. Wybrać [S.On] i ustawić funkcję: On = Rozpoczyna się symulacja. Wartości są symulowane przez (Wł.) czas zadany priorytetem [S.Tim]. Przerwać, naciskając dowolny przycisk. OFF = Symulacja iest nieaktywna. 	Menu SIM: [S.FLW] [S.TMP] [S.Tim] [S.On]
--	--

12 Działanie urządzenia

Można wstępnie ustawić wartości procesowe, które będą wyświetlane stale (\rightarrow 11.5.2 Wyświetlacz standardowy). Standardową jednostkę miary można określić dla pomiaru przepływu objętościowego i temperatury (\rightarrow 11.5.3 oraz \rightarrow 11.5.4).

Opcjonalnie wstępnie ustawiony wyświetlacz standardowy można przełączać przyciskami [▲] lub [▼] → 9.1 Wyświetlanie wartości procesowej (RUN).

13 Rozwiązywanie problemów

Urządzenie posiada wiele funkcji auto diagnostycznych Monitoruje się ono automatycznie w trakcie pracy.

Urządzenie wyświetla ostrzeżenia i stany błędu mimo wyłączenia wyświetlacza. Informacje o błędach są również dostępne poprzez IO-Link.

Sygnały stanu klasyfikuje się wg zalecenia NAMUR NE107.

W przypadku jednoczesnego wystąpienia kilku zdarzeń diagnostycznych urządzenie wyświetla tylko komunikat diagnostyczny dot. zdarzenia o najwyższym priorytecie.

Jeżeli wartość procesowa jest błędna, pozostałe wartości procesowe wciąż są dostępne.

Dodatkowe funkcje diagnostyczne są dostępne przez IO-Link \rightarrow IODD z opisem interfejsu na stronie www.ifm.com.

Wiersz wartości procesowej	Wiersz tytułowy	Dioda LED stanu	Typ	Opis	Zachowanie wyjścia	Rozwią- zywanie problemów
ERROR	ERROR		\otimes	Urządzenie uszko- dzone / awaria	FOU	Wymienić urządze- nie.
Zgaszo- na	Zgaszo- na		\otimes	Za niskie napięcie zasilania	wył.	Sprawdzić napięcie zasilania. Zmienić ustawienie [diS.B] (→ 11.5.2)
			\otimes	Za wysoka tempe- ratura urządzenia, wyświetlacz wył.	OU	Sprawdzić tempera- turę urządzenia.
			A	Za wysoka tempe- ratura urządzenia, wyświetlacz przy- ciemniony	OU	Sprawdzić tempera- turę urządzenia.
PARA	Para- meter Error		\otimes	Ustawienie parame- trów poza odpowied- nim zakresem	FOU	Powtórzyć ustawianie parametrów.

Wiersz wartości procesowej	Wiersz tytułowy	Dioda LED stanu	Typ	Opis	Zachowanie wyjścia	Rozwią- zywanie problemów
ERROR	Flow Error		\otimes	Błąd pomiaru prze- pływu objętościo- wego	FOU	Sprawdzić pomiar przepływu objęto- ściowego. Wymienić urządzenie.
ERROR	Temp Error		\otimes	Błąd pomiaru tempe- ratury	FOU	Sprawdzić pomiar temperatury. Wymie- nić urządzenie.
cr.OL	Critical over limit		\otimes	Przekroczono obszar wykrywania	FOU	Sprawdzić zakres przepływu objętościo- wego / temperatury.
cr.UL	Critical under limit		\otimes	Nie osiągnięto strefy detekcji	FOU	Sprawdzić zakres przepływu objęto- ściowego / zakres temperatury.
	Short circuit OUT1/ OUT2	OUT1 X OUT2 X		Zwarcie OUT1 i OUT2		Sprawdzić wyjścia przełączające OUT1 i OUT2 pod względem zwarcia lub przecią- żenia
	Short circuit OUT1	OUT1 🕱		Zwarcie OUT1		Sprawdzić, czy na wyjściu przełączają- cym OUT1 nie wystą- piło zwarcie lub czy nie jest przeciążone
	Short circuit OUT2	OUT2 🕱	A	Zwarcie OUT2		Sprawdzić, czy na wyjściu przełączają- cym OUT2 nie wystą- piło zwarcie lub czy nie jest przeciążone
OL	Over limit		A	Nastąpiło przekrocze- nie zakresu pomiaru	OU	Sprawdzić zakres przepływu objęto- ściowego / zakres temperatury.

Wiersz wartości procesowej	Wiersz tytułowy	Dioda LED stanu	Typ	Opis	Zachowanie wyjścia	Rozwią- zywanie problemów
UL	Under limit		A	Nie osiągnięto zakre- su pomiaru	OU	Sprawdzić zakres przepływu objęto- ściowego / zakres temperatury.
Lock via key				Zablokowane przyciski ustawień w urządzeniu, zmiana parametrów odrzu- cona	OU	Odblokować urządze- nie(→ 11.1.3)
Lock via commu- nication				Ustawianie para- metrów za pomocą przycisków jest zablokowane, nasta- wa parametrów jest aktywna za pośred- nictwem komunikacji IO-Link	OU	Zakończyć usta- wianie parametrów poprzez IO-Link.
Lock via system			A	Przyciski parametry- zacji zablokowane przez oprogramowa- nie do parametryza- cji, zmiana parame- trów odrzucona	OU	Odblokować urządzenie poprzez IO-Link używając oprogramowania do parametryzacji.
IO-Link	IO-Link flash	OUT1 🔆 OUT2 🗮	A	Włączona funkcja IO-Link do optycznej identyfikacji urzą- dzenia	OU	Wyłączyć funkcję IO-Link.

Zakres wyświetlacza / obszar wykrywania \rightarrow 5.5, rysunek 1.

⊗ Błąd W przypadku błędu wyjścia reagują zgodnie z ustawieniem parametrów [FOU1] i [FOU2] (→ 11.5.11).

A Ostrzeżenie

- 💓 Migająca dioda LED
- 🔆 Szybko migająca dioda LED

14 Konserwacja, naprawa i utylizacja

Co do zasady urządzenie nie wymaga żadnych czynności konserwacyjnych.

 Określić częstotliwość kalibracji okresowej zgodnie z wymaganiami procesu. Zalecenie: co 12 miesięcy.

Jeżeli stosuje się media często gromadzące się lub tworzące osady:

 Regularnie sprawdzać rurę, w której dokonuje się pomiaru, i w razie konieczności czyścić.

Naprawę urządzenia może przeprowadzać tylko jego producent.

 Zużyte urządzenie należy utylizować w sposób przyjazny dla środowiska zgodnie z obowiązującymi przepisami krajowymi.

15 Ustawienia fabryczne

Parametr	SM4020 SM4120	SM6020 SM6120 SM6420	SM6621	SM7020 SM7120 SM7420	SM7621	SM8020 SM8120 SM8420	SM8621	SM8030 SM8130
SEL1	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW
ou1	Hno	Hno	Hno	Hno	Hno	Hno	Hno	Hno
SP1 / FH1	600 ml/min	5,00 I/min	1,32 gal/min	10,0 I/min	2,64 gal/min	20 I/min	5,28 gal/min	33,3 I/min
rP1 / FL1	548 ml/min	4,64 I/min	1,22 gal/min	9,2 I/min	2,44 gal/min	18,4 I/min	4,87 gal/min	30,7 I/min
FSP1	-20°C	-20°C	-4°F	-20°C	-4°F	-20°C	-4°F	-20°C
FEP1	3000 ml/min 80°C	25 I/min 80°C	6,6 gal/min 176°F	50 I/min 80°C	13,21 gal/min 176°F	100 I/min 80°C	26,42 gal/min 176°F	166,7 I/min 80°C
FrP1	1000 Hz	1000 Hz	1000 Hz	1000 Hz	1000 Hz	1000 Hz	1000 Hz	1000 Hz
ImPS	0,001	0,001	0,0002	0,01	0,002	0,01	0,002	0,01
ImPR	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
FOU1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
SEL2	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW	FLOW
ou2	I	I	I	I	I	I	I	I
ASP2	0	0	0	0	0	0	0	0
AEP2	3000 ml/min	25 I/min	6,6 gal/min	50 I/min	13,21 gal/min	100 I/min	26,42 gal/min	250 I/min

Parametr	SM4020 SM4120	SM6020 SM6120 SM6420	SM6621	SM7020 SM7120 SM7420	SM7621	SM8020 SM8120 SM8420	SM8621	SM8030 SM8130
SP2 / FH2	1200 ml/min	10 I/min	2,64 gal/min	20 I/min	5,28 gal/min	40 I/min	10,57 gal/min	66,7 I/min
rP2 / FL2	1148 ml/min	9,63 I/min	2,54 gal/min	19,2 I/min	5,07 gal/min	38,4 I/min	10,15 gal/min	64 I/min
DIn2	+EDG	+EDG	+EDG	+EDG	+EDG	+EDG	+EDG	+EDG
FOU2	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
uni.F	ml/min	l/min	gal/min	l/min	gal/min	l/min	gal/min	l/min
uni.T	°C	°C	°F	°C	°F	°C	°C	°C
dAP	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
dST	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
P-n	PnP	PnP	PnP	PnP	PnP	PnP	PnP	PnP
LFC	5 ml	0,05 I/min	0,01 gal/min	0,01 I/min	0,03 gal/min	0,2 I/min	0,05 gal/min	0,2 I/min
Fdir	+	+	+	+	+	+	+	+
rTo1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
rTo2	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
FPro1	0+	0+	0+	0+	0+	0+	0+	0+
FPro2	0+	0+	0+	0+	0+	0+	0+	0+
LanG	PL	PL	PL	PL	PL	PL	PL	PL
diS.L	L3	L3	L3	L3	L3	L3	L3	L3
diS.U	d3	d3	d3	d3	d3	d3	d3	d3
diS.B	75%	75%	75%	75%	75%	75%	75%	75%
col.F	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh
col.T	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh
col.V	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh	bk/wh