

Operating instructions IO-Link master with EtherCAT interface PerformanceLine

AL1433

Contents

1	Preliminary note51.1Legal and copyright information51.2Symbols used51.3Warnings51.4Safety symbol on the device51.5Change history6
2	Safety instructions. 7 2.1 Cyber security. 7
3	Intended use
4	Function 9 4.1 IO-Link 9 4.1.1 IO-Link supply 9 4.1.2 Digital inputs 9 4.1.3 Digital outputs 9 4.2 Parameter setting 9 4.3 Visual indication 10 4.4 EtherCAT 10 4.5 ifm IoT Core 10 4.6 Voltage output. 10
5	Installation. 11 5.1 Overview. 11 5.2 Install device. 11
6	Electrical connection 12 6.1 Overview 12 6.2 General wiring information 12 6.2.1 Connection technology 12 6.3 Ethernet ports 13 6.4 IO-Link ports (class A) 13 6.4.1 Connecting IO-Link devices (class A) 13 6.5 IO-Link ports (class B) 14 6.5.1 Connecting IO-Link devices (class B) 14
	6.5.2Connecting IO-Link devices (class A)146.6Ground connection146.7Voltage supply156.7.1Derating behaviour156.7.1.1Derating without daisy chain166.7.1.2Derating with daisy chain166.8Voltage output17
7	Operating and display elements 18 7.1 LEDs. 18 7.1.1 Status 18 7.1.2 Voltage supply 19 7.1.3 IO-Link ports (class A). 19 7.1.4 IO-Link ports (class B). 19
8	Set-up
9	Settings. 21 9.1 Parameter setting software 21 9.1.1 Supported parameter setting software 21 9.1.2 Getting started 21 9.1.2.1 Online parameter setting. 22 9.1.2.2 Offline parameter setting. 22 9.1.3 IoT: Configuring access rights. 22 9.1.4 IoT: Configuring the interface to the monitoring software 23 9.1.5 Fieldbus: Configuring the EtherCAT interface 24 9.1.6 Ports: Setting the operating mode pin 4 (US) 24 9.1.7 Ports: Setting the device validation and data storage 25

	9.1.8 Ports: Setting the operating mode pin 2 (UA)	26
	9.1.10 Ports: Setting data transmission to the monitoring software	21 27
	9.1.11 Info: Reading device information	28
	9.1.12 Firmware: Showing the firmware version	28
	9.1.13 Update firmware	28
	9.1.14 Firmware: Resetting the device.	29
	9.1.15 Firmware: Restarting the device	29
	9.1.16 Setting the parameters of IO-Link devices.	29
	9.2 IOT COTE VISUALIZEL	১। 31
	9.2.1 Starting the for elements of the IoT Core	32
	9.2.3 Configuring the device	33
	9.2.3.1 Configuring the access rights to the device	33
	9.2.3.2 Configuring the interface to the monitoring software	34
	9.2.3.3 Configuring the EtherCAT interface.	34
	9.2.3.4 Setting the interval of the timer	35
	9.2.3.5 Setting the operating mode pin 4 (US)	35
	9.2.3.6 Setting the operating mode pin 2 (UA)	36
	9.2.3.7 Restricting the current intensity of the supply voltages US / UA	37
	9.2.3.0 Configuring device validation and data storage	38
	9.2.3.10 Reading the firmware version	39
	9.2.3.11 Setting the application tag.	39
	9.2.3.12 Reading device information	39
	9.2.4 Accessing the process data	41
	9.2.4.1 Reading the status and diagnostic data of the device	41
	9.2.4.2 Setting the counter value	42
	9.2.4.3 Reading the status and diagnostic data of the port	42
	9.2.4.4 Reading and writing input and output data	43
	9.2.4.5 Reading and Writing Information about IO-Link devices	44
	9.2.4.0 Reading IO-LITIK events	44 15
	925 Update firmware	46
	9.3 EtherCAT	47
	9.3.1 Installing the ESI file	47
	9.3.2 Integrating the device into a project.	47
	9.3.2.1 Using Ethernet over EtherCAT (EoE)	48
	9.3.3 Setting the startup parameters	50
	9.3.4 Configuring the IO-Link master	50
	9.3.5 Configuring the ports.	51
	9.3.6 Configuring process data	52
	9.3.7 Accessing the process data	53
	9.3.8 Reading identification information	53
	9.3.9 Reading diagnostic and status information	54
	9.3.9.1 TwinCAT-specific information	55
	9.3.10 Accessing IO-Link devices	57
	9.3.11 Reading IO-Link events.	57
	9.3.12 Using acyclic services	57
	9.3.12.1 Using ADS over EtherCAT	57
	9.3.12.2 Using CANopen over EtherCAT	58
10	Maintenance, repair and disposal	60
	10.1 cleaning	60
	10.2 Update firmware	60
11	Annendix	61
	11.1 FtherCAT	61
	11.1.1 Startup parameters	61
	11.1.2 EtherCAT modules	62
	11.1.2.1 IO-Link Ch.1	62
	11.1.2.2 IO-Link Ch.2	63

11.1.2.3	IO-Link Ch.3	64
11.1.2.4	IO-Link Ch.4	65
11.1.2.5	IO-Link Ch.5	66
11.1.2.6	IO-Link Ch.6	67
11.1.2.7	IO-Link Ch.7	68
11.1.2.8	IO-Link Ch.8	69
11.1.3 Object	ct directory	70
11.1.3.1	Communication Area (0x1000 - 0x1FFF)	70
11.1.3.2	Manufacturer-Specific Area (0x2000 - 0x5FFF)	74
11.1.3.3	Input Area (0x6000 - 0x6FFF)	77
11.1.3.4	Output Area (0x7000 - 0x7FFF)	78
11.1.3.5	Configuration Area (0x8000 - 0x8FFF)	79
11.1.3.6	Information Area (0x9000 - 0x9FFF)	81
11.1.3.7	Diagnosis Area (0xA000 - 0xAFFF).	83
11.1.3.8	Device Area (0xF000 - 0xFFF)	84

1 Preliminary note

You will find instructions, technical data, approvals and further information using the QR code on the unit / packaging or at documentation.ifm.com.

1.1 Legal and copyright information

© All rights reserved by ifm electronic gmbh. No part of these instructions may be reproduced and used without the consent of ifm electronic gmbh.

All product names, pictures, companies or other brands used on our pages are the property of the respective rights owners.

1.2 Symbols used

- ✓ Requirement
- Instructions
- Reaction, result
- [...] Designation of keys, buttons or indications
- → Cross-reference

Important note

Non-compliance may result in malfunction or interference.

ที

Information Supplementary note

1.3 Warnings

Warnings indicate the possibility of personal injury and damage to property. This enables safe product handling. Warnings are graded as follows:

WARNING

Warning of serious personal injury

 $Descript{l}$ If the warning is not observed, fatal and serious injuries are possible.

CAUTION

Warning of minor to moderate personal injury

 \triangleright If the warning is not observed, minor to moderate injuries are possible.

ATTENTION

Warning of damage to property

> If the warning is not observed, damage to property is possible.

1.4 Safety symbol on the device

Safety symbol on the device:

Adhere to the operating instructions for the safe operation of the device.

1.5 Change history

Issue	Subject	Date
00	New creation of the document	11 / 2022
01	Added: Chapter EtherCAT (\rightarrow \Box 47)	05 / 2023

2 Safety instructions

- The unit described is a subcomponent for integration into a system.
 - The system architect is responsible for the safety of the system.
 - The system architect undertakes to perform a risk assessment and to create documentation in accordance with legal and normative requirements to be provided to the operator and user of the system. This documentation must contain all necessary information and safety instructions for the operator, the user and, if applicable, for any service personnel authorised by the architect of the system.
- Read this document before setting up the product and keep it during the entire service life.
- The product must be suitable for the corresponding applications and environmental conditions without any restrictions.
- Only use the product for its intended purpose (→ Intended use).
- If the operating instructions or the technical data are not adhered to, personal injury and/or damage to property may occur.
- The manufacturer assumes no liability or warranty for any consequences caused by tampering with the product or incorrect use by the operator.
- Installation, electrical connection, set-up, operation and maintenance of the product must be carried out by qualified personnel authorised by the machine operator.
- Protect units and cables against damage.

2.1 Cyber security

ATTENTION

Operating the machine in an unprotected network environment

- > Unauthorised read or write access to data is possible.
- > Unauthorised manipulation of the device function is possible.
- Check and restrict access options to the device.

3 Intended use

The device may only be used for the following purposes:

- IO-Link master for configuration, management and operation of IO-Link devices
- Gateway between IO-Link devices and a higher-level EtherCAT control system

The device is designed for use without a control cabinet in the food industry.

4 Function

4.1 IO-Link

The device offers the following IO-Link functions:

- IO-Link master (IO-Link revision 1.0 and 1.1)
- 4 IO-Link ports (class A) for connection of IO-Link devices
- 4 IO-Link ports (class B) for connection of IO-Link devices

4.1.1 IO-Link supply

The device offers supplies for 8 IO-Link devices (sensors, actuators).

Ports X1...X4 are class B ports.

- Pin 2 (UA) of ports X1...X4 supports different operating modes (disconnected from power, supply voltage UA, digital output).
- The current intensity of the supply voltages US and UA of ports X1...X4 can be adjusted.
- Ports X5...X8 are class A ports.
- The current intensity of the supply voltage US of ports X5...X8 can be set.

The device ensures fire protection for connected IO-Link devices by providing an energy-limited circuit at the ports (according to IEC61010-1 and class 2 to UL1310).

4.1.2 Digital inputs

Ports X5...X8 each have an additional digital input. The digital inputs are each at pin 2 of the port.

The digital inputs are supplied with the supply voltage US. They refer to the potential of US (pin 3).

4.1.3 Digital outputs

Ports X1...X4 each have an optionally activable switching output. The additional digital outputs are each at pin 2 of the port.

The digital switching outputs are supplied with the supply voltage UA. They refer to the potential of UA (pin 5).

4.2 Parameter setting

!

Parameter setting with ifm moneo and ifm IoT Core Visualizer is only possible if the Ethernet over EtherCAT (EoE) protocol is activated and configured on the EtherCAT master and the EtherCAT slave.

• Observe the notes: Using Ethernet over EtherCAT (EoE) (\rightarrow \Box 48)

The device can be configured with the following options:

- · Parameter setting software
 - ifm moneo|suite
 - ifm moneo|configure SA
- ifm IoT Core
 - ifm IoT Core Visualizer
- EtherCAT

- Projection software

4.3 Visual indication

The device displays the following indications:

- Status and error indication of the EtherCAT gateway and the system
- Status of the voltage supplies US and UA
- Status and activity indication of the Ethernet connections
- Status and error indication of the IO-Link ports (class A)
- Status and error indication of the IO-Link ports (class B)

4.4 EtherCAT

- Device profile: Module device profile (EtherCAT slave)
- Supported protocols:
 - AoE (ADS over EtherCAT)
 - CoE (CANopen over EtherCAT)
 - EoE (Ethernet over EtherCAT)
 - File Access over EtherCAT (FoE)
- Device description: ESI file

4.5 ifm IoT Core

Access to the functions of ifm IoT Core is only possible if the Ethernet over EtherCAT (EoE) protocol is activated and configured on the EtherCAT master and the EtherCAT slave.

• Observe the notes: Using Ethernet over EtherCAT (EoE) (\rightarrow \Box 48)

- Mapping of the data, events and services of the device to an object model (ifm IoT Core)
- Integration of the device in IIoT applications
- Access to the ifm IoT Core:
 - Browser-based interface (IoT Core Visualizer)
- Supported protocols: HTTP, TCP, JSON

4.6 Voltage output

The device has a voltage output to supply an additional device. This makes it possible to supply several devices with one voltage source (daisy chain).

5 Installation

5.1 Overview

- 1: Upper mounting lug
- 2: Lower mounting lug

5.2 Install device

• Disconnect the power of the machine before installation.

- ▶ Use a flat mounting surface for installation.
- Observe the maximum tightening torque.
- Fasten the module onto the mounting surface using two M5 screws and washers (tightening torque: 1.8 Nm).
- ▶ Observe the notes on how to earth the device: Ground connection (\rightarrow \square 14)

6 Electrical connection

6.1 Overview

FE: Functional earth (FE) Ethernet port 1 (EtherCAT) XF1: Ethernet port 2 (EtherCAT) XF2 Power IN - voltage supply XD1: Power OUT - voltage output XD2: X1: IO-Link port (class B) X2: IO-Link port (class B) X3: IO-Link port (class B) IO-Link port (class B) X4: X5: IO-Link port (class A) X6: IO-Link port (class A) X7· IO-Link port (class A) X8: IO-Link port (class A)

6.2 General wiring information

The unit must be connected by a qualified electrician.

• Observe the national and international regulations for the installation of electrical equipment.

The unit is only suitable for operation using SELV/PELV voltages.

▶ Take information about IO-Link configuration into consideration!

This device contains components that may be damaged or destroyed by electrostatic discharge (ESD).

▶ Please observe the required precautions against electrostatic discharge!

By means of basic insulation according to EN61010-1, the circuits are isolated from each other and from device surfaces that could be touched (secondary circuit with max. 30 V DC, supplied from mains circuit up to 300 V overvoltage category II).

By means of basic insulation according to EN61010-1, the communication interfaces are separated from each other and from device surfaces that could be touched (secondary circuit with V DC maximum, supplied from mains circuit up to 300 V overvoltage category II). They are designed for network environment 0 according to IEC TR62102).

6.2.1 Connection technology

The threaded connections in the device correspond to the M12 standard. To ensure compliance with the specified protection rating, only cables that comply with this standard may be used. In the case of self-assembled cables, the system manufacturer is responsible for the protection rating.

- ▶ Use connectors with gold-plated contacts.
- Check the screw connection 2 weeks after installation and retighten to the correct torque if necessary.

- During installation, place the connectors vertically so that the coupling nut will not damage the thread.
- Before connecting the connector, check that there is an undamaged O-ring in the socket.
- ▶ Observe the coding of the connectors during installation.
- ▶ Cover unused connections with protective covers. Tightening torque: 1.3 ± 0.1 Nm

For UL applications:

To connect the device and the IO-Link devices, only use UL-certified cables belonging to category CYJV or PVVA with a minimum temperature of 80 °C (75 °C in case of a maximum ambient temperature of 40 °C).

6.3 Ethernet ports

The device is connected to the EtherCAT network via the Ethernet ports (e.g. EtherCAT control).

The device is connected to the IT network via the Ethernet ports. The user can configure the device via the IT network (e.g. laptop/PC with parameter setting software, web browser for access to IoT Core Visualizer).

Parameter setting with ifm moneo and ifm IoT Core Visualizer is only possible if the Ethernet over EtherCAT (EoE) protocol is activated and configured on the EtherCAT master and the EtherCAT slave.

• Observe the notes: Using Ethernet over EtherCAT (EoE) (\rightarrow \Box 48)

Wiring:

1 2	1:	TX +
5	2:	RX +
	3:	TX -
4 3	4:	RX -
	5:	not used

- ▶ Use a free port (XF1, XF2) to connect the device to the EtherCAT network.
- ▶ For connection, use M12 connectors (minimum protection rating: IP 65 / IP 66 / IP 67 / IP 69K).
- ▶ Tighten the cable plug using 1.3 ± 0.1 Nm.

6.4 IO-Link ports (class A)

IO-Link devices (sensors, actuators) are connected to the IO-Link ports (class A).

The IO-Link ports meet the requirements of the IO-Link specifications 1.0 to 1.1.2.

The ports are equipped with short-circuit detection (US).

The ports have an additional digital input (type 2, according to IEC 61131-2).

Wiring:

```
1: Sensor supply L+ (US)
```

- 2: Digital input (DI)
- 3: Sensor supply L- (US)
- 4: C/Q IO-Link 5: Not used
- 6.4.1 Connecting IO-Link devices (class A)
- Connect the IO-Link devices to ports X5...X8. Maximum cable length per port: 20 m.
- ▶ For connection, use M12 connectors (minimum protection rating: IP 65 / IP 66 / IP 67 / IP 69K).
- ▶ Tighten the cable plug using 1.3 ± 0.1 Nm.

6.5 IO-Link ports (class B)

IO-Link devices (sensors, actuators) are connected to the IO-Link ports (class B).

The IO-Link ports meet the requirements of the IO-Link specifications 1.0 to 1.1.2.

The ports are equipped with short-circuit detection (US, UA).

The connected IO-Link devices must be supplied exclusively via the IO-Link master.

The additional digital output at pin 2 of the ports meets the requirements of utilisation category DC-13 according to standard IEC 60947-5-1, 20 W.

Wiring:

- 1: Sensor supply L+ (US)
- 2: Digital output / Actuator supply L+ (UA)
- 3: Sensor supply L- (US)4: C/Q IO-Link
- 5: Actuator supply L- (UA)

6.5.1 Connecting IO-Link devices (class B)

- Connect the IO-Link devices to ports X1...X4. Maximum cable length per port: 20 m.
- ▶ For connection, use M12 connectors (minimum protection rating: IP 65 / IP 66 / IP 67 / IP 69K).
- ▶ Tighten the cable plug using 1.3 ± 0.1 Nm.

6.5.2 Connecting IO-Link devices (class A)

CAUTION

Connection of IO-Link devices (class A) to IO-Link ports (class B) with 4 or 5-pole connectors

- Risk of fire
- > Malfunction
- To connect IO-Link devices (class A) to IO-Link ports (class B), use 3-pole connectors only!
- Observe the IO-Link Design Guideline:www.io-link.com.
- Connect the IO-Link devices to ports X1...X4. Maximum cable length per port: 20 m.
- ▶ For connection, use M12 connectors (minimum protection rating: IP 65 / IP 66 / IP 67 / IP 69K).
- ▶ Tighten the cable plug using 1.3 ± 0.1 Nm.

6.6 Ground connection

The FE potential is connected to the following points of the device:

- Upper mounting lug of the housing
- Ports XD1 and XD2: Pin 5 (FE)
- Ports XF1 and XF2

To ensure the protection of the device against electrical interference and to ensure the safe function of the device, the housing has to be connected to the GND of the installation using the shortest possible route.

• Ground the device via the mounting screw of the upper mounting lug.

Optional: Connect pin 5 of port XD1 or XD2 via an L-coded M12 connector to the FE socket of the power supply.

6.7 Voltage supply

The device is connected to the supply voltage US via port XD1.

The supply voltage US supplies the device and the devices connected to ports X1...X8 with voltage.

Optionally, an additional supply voltage UA can be fed to the device via port XD1.

CAUTION

Exceeding the maximum input current of 16 A

- ▷ Risk of fire
- Dimension the IU and IA of the supply sources US and UA, taking into account the derating behaviour of the device: Derating behaviour (→ □ 15)

ATTENTION

The supply voltages US and UA are not protected against cross polarity.

- Damage to the device
- Ensure correct connection of the supply voltages US and UA.

In case of cables that are longer than 25 m, take the voltage drop and the necessary minimum supply voltage of 20 V into consideration!

Port XD1 is equipped with overvoltage protection (US).

Port XD1 is equipped with reverse polarity protection (US, UA).

Wiring:

5 1 2 3

1:	+24 V DC (US)
2:	GND (UA)
3:	GND (US)
4:	+24 V DC (UA)
5:	FE

- Disconnect power.
- Connect the device via port XD1 to the supply voltage US with 24 V DC (20...30 V SELV/PELV; according to IEC 61010-1, secondary circuit with max. 30 V DC, supplied from main circuit up to 300 V of overvoltage category II).
- Optional: Connect the device via port XD1 to the supply voltage UA with 24 V DC (20...30 V SELV/ PELV; according to IEC 61010-1, secondary circuit with max. 30 V DC, supplied from main circuit up to 300 V of overvoltage category II).
- For connection, use an L-coded M12 connector (minimum protection rating: IP 65 / IP 66 / IP 67 / IP 69K).
- Tighten the cable sockets according to the torque specifications indicated by the cable vendor. Maximum permissible tightening torque: 0.8 Nm

6.7.1 Derating behaviour

The current intensity I_{US} available at ports X1...X8 and the current intensity $I_{US-daisy-chain}$ and the current intensity $I_{UA-daisy-chain}$ available on port XD2 depend on the ambient temperature of the device.

The derating measurements were carried out under the following conditions: Supply voltage US / UA: 24 V DC

15

6.7.1.1 Derating without daisy chain

- 1: I_{UA} on port X1...X4
- 2: I_{US} on port X1...X8

6.7.1.2 Derating with daisy chain

Example:

Temperature	_{UA} (X1X4) I _{US} (X1X8) I _{UA-daisy} .		I _{UA-daisy-chain} (XD2)	I _{US-daisy-chain} (XD2)
30 C	8 A	3.6 A	8 A	12 A

2: $I_{UA-daisy-chain}$ on port XD2

For UL applications:

I_{US-daisy-chain} on port XD2
 I_{UA-daisy-chain} on port XD2

Example:

Temperature	I _{UA} (X1X4)	I _{US} (X1X8) I _{UA-daisy-chain} (XD2)		I _{US-daisy-chain} (XD2)
30 C	8 A	3.6 A	5 A	9 A

6.8 Voltage output

An additional device can be supplied via port Power OUT (XD2) (daisy chain). The supply voltages US and UA are looped through from port XD1 to port XD2.

Wiring:

+24 V DC (US)
 GND (UA)
 GND (US)
 +24 V DC (UA)
 FE

- Optional: Connect an additional device to port XD2.
- ▶ Use an L-coded M12 connector (minimum protection rating: IP 65 / IP 66 / IP 67 / IP 69K).
- ▶ Tighten the cable plug using 1.3 ± 0.1 Nm.

7 Operating and display elements

7.1 LEDs

1: status: RDY

- 2: status: ERR
- 3: status: RUN
- 4: EtherCAT: LINK
- 5: EtherCAT: ACT
- 6: IO-Link: 🛛
- 7: IO-Link: UA DO 8: IO-Link: DI
- 9: Power IN: UA
- 10: Power IN: US

7.1.1 Status

LED	Description	Colour	State	Description
RDY	Gateway status	Green	Off	Gateway: Not active or reboots
			Flashes (5 Hz)	Gateway: Error
			Flashes (200 ms on, 800 ms off)	Gateway: Firmware update running
			On	Gateway: OK
RUN	EtherCAT status	Green	Off	Device in "INIT" state
			Flashes (2.5 Hz)	Device in "PRE-OPERATIONAL" state
			Flashes (200 ms on, 1000 ms off)	Device in "SAFE-OPERATIONAL" state
			Flashes (10 Hz)	Device starts and is not yet in the "INIT" state or device is in the "BOOTSTRAP" state
			On	Device in "OPERATIONAL" state
ERR	Error indication	Red	Off	No error
			Flashes (10 Hz)	Boot error
			Flashes (200 ms on, 200 ms off, 200 ms on, 1000s off)	Watchdog error (EtherCAT or process data)
			Flashes (200 ms on, 1000 ms off)	Local error
			Flashes (2.5 Hz)	Invalid configuration
			On	Error in application controller

7.1.2 Voltage supply

LED	Description	Colour	State	Description
US	Status of the supply voltage US	Green	Off	No supply voltage is applied or the applied voltage is too low
			On	Supply voltage applied
UA	Status of the supply voltage UA	Green	Off	No supply voltage is applied or the applied voltage is too low
			On	Supply voltage applied

7.1.3 IO-Link ports (class A)

LED	Description	Colour	State	Description
0	Status of the IO-Link port (pin 4)	Yellow	Off	Port mode DI / DO: Pin 4 (C/Q) = OFF
			On	Port mode DI / DO: Pin 4 (C/Q) = ON
		Green	Flashes (1 Hz)	Port mode IO-Link: No IO-Link device found
			Flashes (5 Hz)	Port mode IO-Link: "PREOPERATE" state
			On	Port mode IO-Link: "OPERATE" state
		Red	Flashes (1.2 Hz)	IO-Link communication error
			On	Port configuration error or short circuit / overload at US
DI	Status of the digital input	Yellow	Off	Digital input: Pin 2 = OFF
	(pin 2)		Flashes (5 Hz)	Digital input: Pin 2 = ON

7.1.4 IO-Link ports (class B)

LED	Description	Colour	State	Description
0	Status of the IO-Link port	Yellow	Off	Port mode DI / DO: Pin 4 (C/Q) = OFF
	(pin 4)		On	Port mode DI / DO: Pin 4 (C/Q) = ON
		Green	Flashes (1 Hz)	Port mode IO-Link: No IO-Link device found
			Flashes (5 Hz)	Port mode IO-Link: "PREOPERATE" state
			On	Port mode IO-Link: "OPERATE" state
		Red	Flashes (1.2 Hz)	Port configuration error or short circuit / overload at US
			On	Transmission error
UA/DO	Status of the IO-Link port	Yellow	Off	Digital input: Pin 2 (UA) = OFF
	(pin 2)		On	Digital input: Pin 2 (UA) = ON
		Green	Off	IO-Link type A supply: Pin 2 (UA) = OFF
			On	IO-Link type B supply: Pin 2 (UA) = ON (not switchable)
		Red	On	Error: Overcurrent or undervoltage

8 Set-up

- ► Install the unit correctly.
- Establish a correct electrical connection with the device.
- $\,\triangleright\,$ Once connected to the supply voltage, the unit will start.
- $\,\triangleright\,$ The LEDs show status and error conditions.
- \triangleright The unit is ready for operation.
- \triangleright The device can be configured.

9 Settings

9.1 Parameter setting software

9.1.1 Supported parameter setting software

The device can be configured with the following parameter setting software:

- ifm moneo|suite
- ifm moneo|configure SA
- ▶ Install the desired parameter setting software.
- Activate the licences required for operation.
- > The installed parameter setting software can be used for parameter setting of the device.

9.1.2 Getting started

!

Parameter setting with ifm moneo and ifm IoT Core Visualizer is only possible if the Ethernet over EtherCAT (EoE) protocol is activated and configured on the EtherCAT master and the EtherCAT slave.

• Observe the notes: Using Ethernet over EtherCAT (EoE) (\rightarrow \Box 48)

- ✓ ifm moneo has been installed correctly on the laptop / PC.
- ✓ ifm moneo has been set up.
- ✓ Ethernet over EtherCAT (EoE) has been activated and configured.
- ✓ The device has a valid IP configuration.
- ✓ The laptop / PC is connected directly or via a suitable network coupling element (e.g. switch) to a EtherCAT port (XF1, XF2) of the device.
- Start ifm moneo.
 - \triangleright The user interface appears.

🛔 🗊	🍪 ifm mon	eo			0	17.5.2023 07:24:17	7 👃	1 🔺	3 🚯
<u>os</u>	RTM DS	л							
Devi Integr Einrich	ce-Management ierte Geräte und htung der	Kalkulierte Werte Erzeugen Sie neue Informationen, indem Sie	Geräte konfigurieren Konfiguration der angeschlossenen Geräte	Gespeicherte Konfigurationen Verwaltung der gespeicherten	Geräte- beschrei Verwaltung und	bungen I der IODD-			
edge Verbir Zielsy	Connect Iden von externen stemen und								

Click on the [Configure devices] tile.

- ▷ View of [connected devices] appears.
- Search for the device in the network via the IP address set during EoE configuration.

 \triangleright ifm moneo detects the IO-Link master.

> The parameter setting software can access the IO-Link master and the connected IO-Link devices.

9.1.2.1 Online parameter setting

The parameters of the IO-Link master and the connected sensors and actuators can be set before installation and set-up or during operation.

If you change parameters during operation, this will influence the function of the plant.

Ensure that there will be no malfunctions in your plant.

During the parameter setting process, the IO-Link master and the connected IO-Link devices stay in operating mode. They continue to perform their functions with the existing parameters until the parameter setting has been completed.

9.1.2.2 Offline parameter setting

The device supports offline parameter setting. The user creates a configuration for the IO-Link master and the connected IO-Link devices without being connected to the device. The configuration created can be stored as a file (*.Irp) and loaded to the device and activated at a later point.

9.1.3 IoT: Configuring access rights

The device can be integrated in parallel into a fieldbus environment and into an IT network structure for IIoT applications ("Y-path").

Parameter	Description	Va	lue range	Access
Access rights	Access rights to the device	•	Fieldbus + IoT:	rw ¹
			 Fieldbus and ifm IoT Core have read and write access rights to parameters and process data 	
			 Fieldbus and ifm IoT Core have read and write access rights to parameters and process data 	
		•	Fieldbus + IoT (read only):	
			 Fieldbus has read and write access rights to parameters and process data 	
			 Fieldbus has read access rights to events / alarms 	
			 ifm IoT Core has read access rights to parameters, process data and events / alarms 	
		•	loT only	
			 ifm IoT Core has read and write access rights to parameters and process data 	
		.	 ifm IoT Core has read access rights to events / alarms 	
			 Fieldbus has no access rights 	

Available parameters:

¹ Read and write

When setting the parameters of the access rights in the parameter setting software, observe the following notes:

- If the access rights in the fieldbus projection software and the parameter setting software are set to the [Fieldbus + IoT] value, the parameter values set on the fieldbus side always apply.
- For exclusive access to the device via the parameter setting software, set the access rights to the [IoT only] value and set the access rights to [Keep settings] in the fieldbus projection software.

 If the access rights in the parameter setting software have been set to the [Fieldbus + IoT (read only)] value, the access rights in the parameter setting software can no longer be changed. To regain write access with the parameter setting software, set the access rights in the fieldbus projection software to the [Fieldbus + IoT] value.

To configure the access rights:

Requirements:

- ✓ The parameter setting software has been started.
- ✓ The connection to the device has been established.
- Select the [IoT] menu.
 - \triangleright The menu page shows the current settings.
- ▶ Set the access rights.
- ▶ Write the changed values to the device.
- Restart the device.
- \triangleright The changed access rights are active.

9.1.4 IoT: Configuring the interface to the monitoring software

To enable transmission of the process data of the IO-Link master to the monitoring software (e.g. ifm moneo suite), the interface must be configured accordingly.

Available parameters:

Name	Description	Value range	Access
IP address LR Agent or SMARTOBSERVER	IP address of the monitoring soft- ware	e.g. 255.255.255.255 (default)	rw ¹
Port LR Agent or SMARTOB- SERVER	Port number of the monitoring soft- ware	 0: 0 35100: 35100 (default) 65535: 65535 	rw ¹
Interval LR Agent or SMAR- TOBSERVER	Interval for data transmission to the monitoring software (value in milli- seconds)	 Disabled: No transmission (default) 500: 500 ms 2147483647: 2147483647 ms 	rw ¹
Application tag	Source identifier of the device in the monitoring software	e.g., "factory 2 plant 1"	rw ¹

¹ Read and write

To set the interface to the monitoring software:

!

After changing the parameters [Port LR Agent or SMARTOBSERVER] or [Application Tag], it may take 120 seconds before the device establishes a new TCP connection.

To prevent the delay:

When the parameter has been changed, restart the IO-Link master.

- ✓ The parameter setting software has been started.
- $\checkmark\,$ The connection to the device has been established.
- $\checkmark~$ The detailed view of the device is active.
- Select the [IoT] menu.
 - ▷ The menu page shows the current settings.
- Set the parameters of the interface.

- ▶ Write the changed values to the device.
- > Interface to the monitoring software has been set.

9.1.5 Fieldbus: Configuring the EtherCAT interface

The EtherCAT interface is used to connect the device to the EtherCAT network.

Available parameters:

Parameter	Description	Value range	Access
Hostname	EtherCAT hostname	e.g., alxx3x	rw ¹
Fieldbus firmware	Firmware of the fieldbus	e.g., 4.7.0.3 (EtherCAT Slave)	ro ²

- ¹ Read and write
- ² Read only

To configure the EtherCAT interface:

Requirements:

- ✓ The parameter setting software has been started.
- ✓ The connection to the device has been established.
- ✓ The detailed view of the device is active.
- Select the [Fieldbus] menu.
 - \triangleright The menu page shows the current settings.
- Set the parameters of the EtherCAT interface.
- Save the changes on the device.
- \triangleright The EtherCAT interface of the device has been configured.

9.1.6 Ports: Setting the operating mode pin 4 (US)

Pin 4 of ports X1...X8 supports the following operating modes:

- Disabled: No data transmission at pin 4 (C/Q) of the port
- Digital input: Binary input signal at pin 4 (C/Q) of the port
- Digital output: Binary output signal at pin 4 (C/Q) of the port
- IO-Link: IO-Link data transmission via pin 4 (C/Q) of the port

The set operating mode must match the operating mode of the device connected to the port (sensor, actuator, IO-Link device).

Available parameters:

Name	Description	Value range	Access
[Mode Pin4 US]	Operating mode of pin 4 (US) of the port	 Disabled: Port disabled DI: Digital input DO: Digital output IO-Link: IO-Link data 	rw ¹
[Cycle time actual]	Current cycle time of the data trans- mission between the port and the IO-Link device (value in microsec- onds)	 0: Best possible cycle time 1: 1 µs 132800: 132800 µs 	ro ²³
[Bitrate]	Current transmission rate between the port and the IO-Link device	 COM1: 4.8 kbaud COM2: 38.4 kbaud COM3: 230.4 kbaud 	ro ^{2 3}

¹ Read and write

² Read only

³ Parameter only available if operating mode pin 4 (US) = IO-Link and IO-Link device is connected to the port

In the IO-Link operating mode, the following parameters can be set additionally:

Name	Description	Value range	Access
[Cycle time preset]	Cycle time of the data transmission between the port and the IO-Link device (value in microseconds)	 0: Set the best possible cycle time automatically 1: 1 µs 132800: 132800 µs 	rw ¹

¹ Read and write

To set the operating mode of pin 4 (US):

Requirements:

- ✓ The parameter setting software has been started.
- ✓ The connection to the device has been established.
- ► Select the [Port x] (x = 1...8) menu.
 - \triangleright The menu page shows the current settings.
- Set the operating mode of pin 4 (US).
- Optional: Set the cycle time for the IO-Link operating mode.
- ► Write the changed values to the device.
- \triangleright The operating mode of pin 4 (US) has been set.

9.1.7 Ports: Setting the device validation and data storage

The device supports the functions device validation and backup / restore of parameter data of the connected IO-Link devices.

The following options are available:

Option	Validation of the connected IO-Link device	Backup of parameter values	Restore of parameter val- ues
[No check and clear]	No	No	No
[Type compatible V1.0 de- vice]	Yes, test compatibility with IO- Link standard V1.0	No	No
[Type compatible V1.1 de- vice]	Yes, test compatibility with IO- Link standard V1.1	No	No
[Type compatible V1.1 de- vice with Backup + Restore]	Yes, test compatibility with IO- Link standard V1.1 and identity of design (vendor ID, device ID)	Yes, automatic backup of pa- rameter values; Changes to the current parameter values will be stored	Yes, restore of parameter val- ues when connecting an iden- tical IO-Link device with facto- ry settings
[Type compatible V1.1 de- vice with Restore]	Yes, test compatibility with IO- Link standard V1.1 and identity of design (vendor ID, device ID)	No, there is no automatic backup; Changes to the pa- rameter values are not stored	Yes, restore of parameter val- ues when connecting an iden- tical IO-Link device with facto- ry settings

Device validation and backup / restore of parameter values are only available if the "IO-Link" operating mode of the port has been activated.

For options [Type compatible V1.1 device with Backup + Restore] and [Type compatible V1.1 device with Restore]: If the parameters [Vendor ID] or [Device ID] are changed in online mode, the data memory is deleted and the parameter values of the connected IO-Link device are backed-up again in the IO-Link master.

Available parameters:

Name	Description	Value range	Access
Validation / Data Storage	Validation of the connected IO-Link de- vices and automatic restore of parame- ter sets of the IO-Link device	 No check and clear Type compatible V1.0 device Type compatible V1.1 device Type compatible V1.1 device with Backup + Restore Type compatible V1.1 device with Restore 	rw ^{1 2}
Vendor ID	Vendor ID of the IO-Link device to be validated against	e.g., 310: ifm electronic gmbh	rw ^{1 2}
Device ID	Device ID of the IO-Link device to be validated against	e.g., 1129: TCC501 (ifm temperature sensor)	rw ^{1 2}

¹ Read and write

² Parameter only available if operating mode pin 4 (US) = IO-Link and IO-Link device is connected to the port

To configure the device validation and the backup / restore of parameter values:

Requirements:

- ✓ The parameter setting software has been started.
- ✓ The connection to the device has been established.
- ✓ The detailed view of the device is active.
- ✓ Operating mode of pin 4 of the port is "IO-Link".
- ► Select the [Port x] > [IO-Link] menu (x = 1...8).
 - \triangleright The menu page shows the current settings.
- Set the parameters for device validation and backup / restore of parameter values.
- ▶ Optional: Enter the vendor ID and device ID.
- Save the changes on the device.
- > Device validation and backup / restore of parameter values have been configured.

9.1.8 Ports: Setting the operating mode pin 2 (UA)

Pin 2 of ports 1...4 supports the following operating modes:

- · Off: Pin 2 is disconnected from the power supply; Port operates as IO-Link port class A
- On: Voltage UA is connected at pin 2; Port operates as IO-Link port class B
- Digital output (DO): A binary output signal is available at pin 2; Port operates as a digital switching output

Available parameters:

Name	Description	Value range	Access
[Mode Pin2 UA]	Operating mode of pin 2 of the port	 Off (IO-Link Type A Supply): IO-Link Port Class A On (IO-Link Type B Supply): IO-Link Port Class B 	rw ¹
		Digital Output: Digital switching output	

¹ Read and write

To set the operating mode of pin 2 (UA) of a port:

- ✓ The parameter setting software has been started.
- $\checkmark\,$ The connection to the device has been established.
- Select the [Port x] (x = 1...8) menu.
 - \triangleright The menu page shows the current settings.

- Set the operating mode.
- ▶ Write the changed values to the device.
- \triangleright Operating mode of pin 2 (UA) of the port has been set.

9.1.9 Ports: Restricting current intensity

The following electrical properties can be set for ports X1...X4:

- Max. current intensity of the supply voltage US (pin 1 and pin 4)
- Max. current intensity of the supply voltage UA (pin 2)

The following electrical properties can be set for ports X5...X8:

• Max. current intensity of the supply voltage US (pin 1 and pin 4)

Available parameters:

Name	Description	Value range	Access
[Current Limit Pin2 UA]	Max. current intensity of the supply voltage UA on the port (value in milli- amps)	 0: 0 mA (default) 2000: 2000 mA 	rw ¹
[Current Limit Pin1 + Pin4 US]	Max. current intensity of the supply voltage US on the port (value in milli- amps)	 0: 0 mA 450: 450 mA (default) 2000: 2000 mA 	rw ¹

¹ Read and write

To restrict the current intensity of the ports:

Requirements:

- ✓ The parameter setting software has been started.
- ✓ The connection to the device has been established.
- ► Select the [Port x] (x = 1...8) menu.
 - \triangleright The menu page shows the current settings.
- Set the parameters.
- ▶ Write the changed values to the device.
- \triangleright The output current intensities of the port are restricted.

9.1.10 Ports: Setting data transmission to the monitoring software

Available parameters:

Name	Description	Value range	Access
Transmission to moneo, LR Agent or SMARTOBSERVER	Enable / Disable the transmis- sion of process data of the port to the monitoring software	Disabled: Process data is not transmittedEnabled: Process data is transmitted	rw ¹

¹ Read and write

To set the data transmission:

- ✓ The parameter setting software has been started.
- ✓ The connection to the device has been established.
- ✓ The detailed view of the device is active.
- ✓ Interface to the monitoring software has been configured.

- ► Select the [Port x] (x = 1...8) menu.
 - ▷ The menu page shows the current settings.
- Set the parameters.
- ▶ Write the changed values to the device.
- \triangleright Data transmission to the monitoring software has been set.

9.1.11 Info: Reading device information

Available information:

To read the device information:

Requirements:

- ✓ The parameter setting software has been started.
- ✓ The connection to the device has been established.
- ✓ The detailed view of the device is active.
- Select the [Info] menu.
- \triangleright The menu page shows the device information.

9.1.12 Firmware: Showing the firmware version

Available parameters:

Parameter	Description	Value range	Access
Version	Firmware version	e.g., AL1x3x_cn_ec_v3.5.56	ro ¹

¹ Read only

Requirements:

- ✓ The parameter setting software has been started.
- ✓ The detailed view of the device is active.
- Select the [Firmware] menu.
- \triangleright The menu page shows the firmware version.

9.1.13 Update firmware

To update the firmware of the device:

- ✓ New firmware has been downloaded. documentation.ifm.com
- ✓ The parameter setting software has been started.
- ✓ The connection to the device has been established.
- $\checkmark\,$ The detailed view of the device is active.
- ▶ In the header: Click on **↑**.
 - \triangleright A dialogue window appears.
- Click on [Import firmware file].
 - \triangleright The file explorer appears.
- Select the firmware file (.bin) and click on [Open].
 - \triangleright The new firmware file is selected.
- Click on [OK].

- \triangleright The firmware of the device is updated.
- \triangleright The status of the update process is displayed.
- \triangleright The firmware of the device has been updated.

9.1.14 Firmware: Resetting the device

Requirements:

- ✓ The parameter setting software has been started.
- ✓ The detailed view of the device is active.
- Select the [Firmware] menu.
- Click on [Factory reset].
- \triangleright The device is reset to the factory settings.
- \triangleright All parameters are set to their default values.
- \triangleright The device is read again.

9.1.15 Firmware: Restarting the device

Requirements:

- ✓ The parameter setting software has been started.
- ✓ The connection to the device has been established.
- Select the [Firmware] menu.
- Click on [Reboot].
- \triangleright The device will be restarted.
- \triangleright All set parameter values will be retained.

9.1.16 Setting the parameters of IO-Link devices

The device supports access to connected IO-Link devices (sensors, actuators).

Information about the parameters of the IO-Link device:

→ Operating instructions IO-Link device

ightarrow IODD description of the IO-Link device

Requirements:

ົາເ

- ✓ The IO-Link device is connected correctly to the IO-Link port of the device.
- ✓ The parameter setting software has been started.
- ✓ Operating mode pin 4 (US) of the port with the IO-Link device is "IO-Link".
- ✓ IoT has read and write access rights for the IO-Link master.
- ▶ Update the IODD library of the parameter setting software.
 - ▷ The IODD library of the parameter setting software contains the IODD of the IO-Link device.
- Scan the network for devices.
 - > Parameter setting software detects the IO-Link master.
- Establish connection to the IO-Link master.
 - ▷ Parameter setting software detects the connected IO-Link device.
- Click on the IO-Link device.
 - > A detailed view of the IO-Link device appears.

- \triangleright The detailed view shows the current parameter values of the IO-Link device.
- Configure the IO-Link device.
- Store the changed configuration on the IO-Link device.
- $\,\triangleright\,$ The parameters of the IO-Link device have been set.

9.2 IoT Core Visualizer

The IoT Core Visualizer provides a graphical user interface to access the functions of the ifm IoT Core.

9.2.1 Starting the IoT Core Visualizer

Access to the functions of ifm IoT Core is only possible if the Ethernet over EtherCAT (EoE) protocol is activated and configured on the EtherCAT master and the EtherCAT slave.

• Observe the notes: Using Ethernet over EtherCAT (EoE) (\rightarrow \Box 48)

To start the IoT Core Visualizer:

Requirements:

- ✓ The laptop / PC is connected directly or via a suitable network coupling element (e.g. switch) to a EtherCAT port (XF1, XF2) of the device.
- ✓ Ethernet over EtherCAT (EoE) has been activated and configured.
- ✓ The device has a valid IP configuration.
- Start web browser.
- Go to the following URL: http://<ip-address>/web/subscribe (e.g. http://192.168.82.100/web/ subscribe)
- \triangleright The web browser displays the start page of the IoT Core Visualizer.

loT-Core Visualizer ×	+				- 0	×
\leftarrow \rightarrow C \textcircled{a}	🔿 🗟 192.168.82.100/web/subscribe				☆ @) =
00-02-01-05-50-71 - online						9
Notification Elements	Parameter Processdata	Update				
Search						
						+
Consumer ID Channel Bro	ker/Server	Event	Data	Duration	Unsubscribe	

The navigation menu gives the user access to the following functions:

- [Notification]: Not available
- [Elements]: Searching for elements of the IoT Core (\rightarrow \Box 32)
- [Parameter]: Configuring the device $(\rightarrow \square 33)$
- [Processdata]: Accessing the process data (→ □ 41)
- [Update]: Update firmware (\rightarrow \Box 46)

9.2.2 Searching for elements of the IoT Core

The [Elements] menu page allows you to search the IoT Core tree for elements with specific properties and output the results.

The following properties can be searched for:

- [identifier]: Name of the element
- [profile]: Profile of the element
- [type]: Type of the element

- ✓ IoT Core Visualizer has been started.
- ✓ The [Elements] menu is active.

00-02-01-0f-c8-92 - online			2.6.19
Notification Elements	Parameter Processdata	Update	
		Search for	
identifier	getdatamulti		
profile	service		
type			
Processdatamaster Devi	iceinfo Timer[1] Timer[2] lot	setup Fieldbussetup Connections Iolinkmaster Firmware	
Devicetag			
^ 00-02-01-0f-c8-92			
getidentity	00-02-01-0f-c8-92/getidentity	type: service profiles: undefined	Copy URL
gettree	00-02-01-0f-c8-92/gettree	type: service profiles: undefined	Copy URL
querytree	00-02-01-0f-c8-92/querytree	type: service profiles: undefined	Copy URL
getsubscriberlist	00-02-01-0f-c8-92/getsubscriberlist	type: service profiles: undefined	Copy URL

- Select the search criteria for the required element in the selection lists [identifier], [profile] and [type].
- Click on [Search for...].
- ▷ IoT Core Visualizer searches the device description for elements with selected search criteria.
- \triangleright The result list shows all the elements found.

9.2.3 Configuring the device

The [Parameter] menu page provides access to the configuration options of the device.

Requirements:

- ✓ IoT Core Visualizer has been started.
- Select the [Parameter] menu.
- \triangleright The menu page shows the available parameters of the device.

00-02-01-0f-c8-92 - online						2.6.19
Notification Elements	Parameter F	Processdata Upd	ate			
Deviceinfo Timer[1] Timer	[2] <u>lotsetup</u> F Networ k	ieldbussetup Conr	nections Iolir	nkmaster Fir	mware Devicetag	
^ iotsetup						
accessrights	iot only		Yupe: Name: Encod Valuat	enum space: json ling: integer tion: valuelist 0: 1: 1: 3:	: fieldbus + iot fieldbus + iot (read- only) iot only	Copy URL 🕑 🖍
^ network						ø
macaddre	ss 00:02:	01:0F:C8:92	Ty Na Er	/pe: strin amespace: json ncoding: utf-8	9	Copy URL 😈
ipaddress	169.25	54.1.200	Ty Na Er Va	/pe: strin amespace: json ncoding: utf-8 aluation: minl maxi	g ength: 7 length: 15	Copy URL (
subnetma	sk 255.25	55.0.0	Ty Na	/pe: strin amespace: json	g	Copy URL U

9.2.3.1 Configuring the access rights to the device

The device can be integrated in parallel into a fieldbus environment and into an IT network structure for IIoT applications ("Y-path").

Available parameters:

Name	Description	Value range	Access
[accessrights]	Access rights to the device	• fieldbus + iot:	rw ¹
		 Fieldbus and ifm IoT Core have read and write access rights to parameters and process data 	
		 Fieldbus and ifm IoT Core have read and write access rights to parameters and process data 	
		 fieldbus + iot (read only): 	
		 Fieldbus has read and write access rights to parameters and process data 	
		 Fieldbus has read access rights to events / alarms 	
		 ifm IoT Core has read access rights to parameters, process data and events / alarms 	
		iot only:	
		 ifm IoT Core has read and write access rights to parameters and process data 	
		 ifm IoT Core has read access rights to events / alarms 	
		 Fieldbus has no access rights 	

¹ Read and write

When setting the parameters of the access rights in the parameter setting software, observe the following notes:

- If the access rights in the fieldbus projection software and in the IoT Core Visualizer are set to the value *fieldbus + iot*, the parameter values set on the fieldbus side always apply.
- For exclusive access to the device via the IoT Core Visualizer, set the access rights to the value *iot only* and set the access rights to Keep settings in the fieldbus projection software.
- If the access rights in the IoT Core Visualizer are set to the value *fieldbus + iot (read only)*, the access rights in the IoT Core Visualizer can no longer be changed. To regain write access with the IoT Core Visualizer, set the access rights to the value *fieldbus + iot* in the fieldbus projection software.

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- Select the [iotsetup] submenu.

9.2.3.2 Configuring the interface to the monitoring software

To enable transmission of the process data of the IO-Link master to the monitoring software (e.g. ifm moneo suite), the interface must be configured accordingly.

Available parameters:

Name	Description	Value range	Access
[smobip]	IP address of the interface to the moni- toring software	e.g., 255.255.255.255 (default)	rw ¹
[smobport]	Port number of the interface to the monitoring software	 0: 0 35100: 35100 (default) 65535: 65535 	rw ¹
[smobinterval]	Interval for data transmission to the monitoring software	 disabled: No transmission (default) 500: 500 ms 2147483647: 2147483647 ms 	rw ¹

Read and write

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- Select the [iotsetup] submenu.
 - \triangleright The menu page shows the current settings.
- ▶ Set the parameters of the interface.
- ▶ Click on ✓ to save the changes to the device.
- \triangleright Interface to the monitoring software has been set.

9.2.3.3 Configuring the EtherCAT interface

The EtherCAT interface is used to connect the device to the EtherCAT network.

Available parameters:

Parameter	Description	Value range	Access
[hostname]	EtherCAT hostname	e.g., alxx3x	rw ¹

Parameter	Description	Value range	Access
[fieldbusfirmware]	Firmware of the fieldbus	e.g., 4.7.0.3 (EtherCAT Slave)	ro ²

¹ Read and write

² Read only

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- Select the [Fieldbussetup] submenu.

▷ The menu page shows the current settings.

- Set the parameters of the EtherCAT interface.
- ► Click on ✓ to save the changes to the device.
- \triangleright The EtherCAT interface of the device has been configured.

9.2.3.4 Setting the interval of the timer

Available parameters:

Name	Description	Value range	Access
[interval]	Interval of the counter (value in ms)	 0: deactivated 500: 500 ms 	rw ¹
		• 2147483647: 2147483647 ms	

¹ Read and write

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- ▶ Select the [Timer[n]] submenu (n: 1...2).
 - ▷ The menu page shows the current settings.
- Set the parameters.
- ▶ Click on ✓ to save the changes to the device.
- \triangleright The intervals of the counter have been set.

9.2.3.5 Setting the operating mode pin 4 (US)

Pin 4 of ports X1...X8 supports the following operating modes:

- Disabled: No data transmission at pin 4 (C/Q) of the port
- Digital input: Binary input signal at pin 4 (C/Q) of the port
- Digital output: Binary output signal at pin 4 (C/Q) of the port
- IO-Link: IO-Link data transmission via pin 4 (C/Q) of the port

The set operating mode must match the operating mode of the device connected to the port (sensor, actuator, IO-Link device).

Available parameters:

Name	Description	Value range	Access
[mode]	Operating mode of pin 4 (US) of the port	disabled: Port disabled	rw ¹
		di: Digital input	
		do: Digital output	
		 io-link: IO-Link data 	

Name	Description	Value range	Access
[mastercycletime_actual]	Current cycle time of the data transmis- sion between the port and the IO-Link device (value in microseconds)	 0: Best possible cycle time 1: 1 μs 132800: 132800 μs 	ro ²
[comspeed]	Current transmission rate between the port and the IO-Link device	 com1 (4.8 kbaud): 4.8 kbaud com2 (38.4 kbaud): 38.4 kbaud com3 (230.4 kbaud): 230.4 kbaud 	ro ²

¹ Read and write

² Read only

In the IO-Link operating mode, the following parameters can be set additionally:

Name	Description	Value range	Access
[mastercycletime_preset]	Cycle time of the data transmission be- tween the port and the IO-Link device (value in microseconds)	 0: Best possible cycle time 1: 1 μs 132800: 132800 μs 	rw ¹

¹ Read and write

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- Select the [lolinkmaster] > [port[x]] submenu (x: 1...8).
- \triangleright Set the operating mode pin 4 (US).
- Optional: Set the cycle time of the data transmission between the port and the IO-Link devices.
- ▶ Click on ✓ to save the changes to the device.
- \triangleright Operating mode of pin 4 (US) of the port has been set.

9.2.3.6 Setting the operating mode pin 2 (UA)

Pin 2 of ports 1...4 supports the following operating modes:

- · Off: Pin 2 is disconnected from the power supply; Port operates as IO-Link port class A
- On: Voltage UA is connected at pin 2; Port operates as IO-Link port class B
- Digital output (DO): A binary output signal is available at pin 2; Port operates as a digital switching output

Available parameters:

Name	Description	Value range	Access
[mode_ua]	Operating mode of pin 2 of the port	 off (io-link type a supply): IO-Link Port Class A on (io-link type b supply): IO-Link Port Class B digital output: Digital switching output 	rw ¹

¹ Read and write

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- Select the [lolinkmaster] > [port[x]] > [powercontrol] submenu (x:1...8).
- Set the parameters.
- ▶ Click on ✓ to save the changes to the device.
- \triangleright The operating mode of pin 2 (UA) has been set.
9.2.3.7 Restricting the current intensity of the supply voltages US / UA

The following electrical properties can be set for ports X1...X4:

- Max. current intensity of the supply voltage US (pin 1 and pin 4)
- Max. current intensity of the supply voltage UA (pin 2)

The following electrical properties can be set for ports X5...X8:

• Max. current intensity of the supply voltage US (pin 1 and pin 4)

Available parameters:

Name	Description	Value range	Access
[current_us_max]	Max. current intensity of the supply voltage US on the port (value in milli- amps)	 0: 0 mA 450: 450 mA (default) 2000: 2000 mA 	rw ¹
[current_ua_max]	Max. current intensity of the supply voltage UA on the port (value in milli- amps)	 0: 0 mA (default) 2000: 2000 mA 	rw ¹

¹ Read and write

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- ► Select the [lolinkmaster] > [port[x]] > [powercontrol] submenu (x:1...8).
- Set the parameters.
- ▶ Click on ✓ to save the changes to the device.
- \triangleright The current intensities of the supply voltages have been restricted.

9.2.3.8 Configuring device validation and data storage

The device supports the functions device validation and backup / restore of parameter data of the connected IO-Link devices.

Option	Validation of the connected IO-Link device	Backup of parameter values	Restore of parameter val- ues
[No check and clear]	No	No	No
[Type compatible V1.0 de- vice]	Yes, test compatibility with IO- Link standard V1.0	No	No
[Type compatible V1.1 de- vice]	Yes, test compatibility with IO- Link standard V1.1	No	No
[Type compatible V1.1 de- vice with Backup + Restore]	Yes, test compatibility with IO- Link standard V1.1 and identity of design (vendor ID, device ID)	Yes, automatic backup of pa- rameter values; Changes to the current parameter values will be stored	Yes, restore of parameter val- ues when connecting an iden- tical IO-Link device with facto- ry settings
[Type compatible V1.1 de- vice with Restore]	Yes, test compatibility with IO- Link standard V1.1 and identity of design (vendor ID, device ID)	No, there is no automatic backup; Changes to the pa- rameter values are not stored	Yes, restore of parameter val- ues when connecting an iden- tical IO-Link device with facto- ry settings

The following options are available:

Device validation and backup / restore of parameter values are only available if the "IO-Link" operating mode of the port has been activated.

For options [Type compatible V1.1 device with Backup + Restore] and [Type compatible V1.1 device with Restore]: If the parameters [Vendor ID] or [Device ID] are changed in online mode, the data memory is deleted and the parameter values of the connected IO-Link device are backed-up again in the IO-Link master.

Available parameters:

Name	Description	Value range	Access
[validation_datastor- age_mode]	Validation of the connected IO- Link devices and automatic re- store of parameter sets of the IO- Link device	 No check and clear Type compatible V1.0 device Type compatible V1.1 device Type compatible V1.1 device with Backup + Restore Type compatible V1.1 device with Restore 	rw ¹²
[validation_vendorid]	Vendor ID of the IO-Link device to be validated against	e.g., 310: ifm electronic gmbh	rw ^{1 2}
[validation_deviceid]	Device ID of the IO-Link device to be validated against	e.g., 1129: TCC501 (ifm temperature sensor)	rw ¹²

¹ Read and write

² Parameter only available if operating mode pin 4 (US) = IO-Link and IO-Link device is connected to the port

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- Select the [lolinkmaster] > [port[x]] submenu (x: 1...8).
- Set the parameters for device validation and backup / restore of parameter values.
- ▶ Optional: Enter the vendor ID and device ID.
- ▶ Click on ✓ to save the changes to the device.
- > Device validation and backup / restore of parameter values have been configured.

9.2.3.9 Setting data transmission to the monitoring software

Available parameters:

Name	Description	Value range	Access
[senddatatosmob]	Enable / Disable the transmission of process data of the port to the monitor- ing software	disabled: Process data not transmittedenabled: Process data transmitted	rw ¹

¹ Read and write

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- ✓ Interface to the monitoring software has been configured.
- ► Select the [lolinkmaster] > [port[x]] submenu (x: 1...8).
 - \triangleright The menu page shows the current settings.
- Set the parameters.
- ▶ Click on ✓ to save the changes to the device.
- \triangleright Data transmission to the monitoring software has been set.

9.2.3.10 Reading the firmware version

Available information:

Name	Description	Value range	Access
[version]	Firmware version	4.7.0.3 (EtherCAT Slave)	ro ¹

¹ Read only

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- Select the [Firmware] submenu.
- \triangleright The menu page shows available information.

9.2.3.11 Setting the application tag

Available parameters:

Name	Description	Value range	Access
[applicationtag]	Designation of the device in the monitoring software	e.g., "factory 2 plant 1"	rw ¹

¹ Read and write

- 32 bytes are available on the device for storing the applicationtag parameter. If the memory range is exceeded, the device will abort the write process (diagnostic code 400).
- When writing the applicationtag parameter, observe the different memory requirements of the individual UTF-8 characters (characters 0-127: 1 byte per character; characters >127: more than 1 byte per character).

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- Select the [Devicetag] submenu.
 - \triangleright The menu page shows the current settings.
- Enter the application tag.
- ▶ Click on ✓ to save the changes to the device.
- \triangleright The new application tag has been set.

9.2.3.12 Reading device information

Available information:

Name	Description	Value range	Access
[productcode]	Article number	AL1433	ro ¹
[devicefamily]	Family of the device	IO-Link master	ro ¹
[vendor]	Manufacturer or vendor	ifm electronic gmbh	ro ¹
[swrevision]	Firmware version	e.g., AL1x3x_cn_ec_v3.5.56	ro ¹
[hwrevision]	Hardware version	e.g., AA	ro ¹
[bootloaderrevision]	Bootloader version	e.g., AL1xxx_bl_f7_v2.4.1	ro ¹
[serialnumber]	Serial number	e.g., 000194610104	ro ¹

¹ Read only

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Parameter] menu is active.
- Select the [Deviceinfo] submenu.
- \triangleright The menu page shows the device information.

9.2.4 Accessing the process data

The [Processdata] menu page provides access to the process data of the device.

Requirements:

- ✓ IoT Core Visualizer has been started.
- Select the [Processdata] menu.
- > The menu page shows the substructures of the device description that contains the process data.

 \triangleright The current process values are displayed.

00-02-01-0f-c8-92 - c	online					2.6.19
Notification E	Elements Parameter	Processdata	Update			
Polling: 🔿						
Polling interval in sec						
15	Refresh a					
Processdatamaste	er Timer[1] Timer[2] Fieldbussetup	<mark>Iolinkmaster</mark> Port[1] Port[2] Por Port[4]	t[3]		
^ iolinkma	aster					
^	port[1]					
	portevent	000100		Type: s Namespace: j Encoding: h	string son nexstring	Copy URL 🔰 🖍
	^ iolinkdevice					
	vendorid			Type: Namespace: Encoding: Valuation:	number json integer min: 0 max: 6553	Copy URL U
	deviceid			Type: Namespace:	number json	Copy URL

- Optional: In the header, activate the [Polling] option and set the polling interval.
 - \triangleright The process values will be refreshed with the set interval.
- ▶ Optional: Click on ^O next to an element to manually refresh the process value.

9.2.4.1 Reading the status and diagnostic data of the device

Available information:

Name	Description	Value range	Access
[temperature]	Temperature of the device (value in °C)	• -30: -30 °C	ro ¹
		• 80: 80 °C	
[voltage]	Current voltage of the device supply US	• 0: 0 mV	ro ¹
	(value in millivolts)		
		• 4000: 4000 mV	
[supervisionstatus]	Status of the voltage supply US	ok: No error	ro ¹
		• fault: Error	
[current_ua]	Present current intensity of the device	• 0: 0 mA	ro ¹
	supply UA (value in milliamps)		
		• 4000: 4000 mA	
[supervisionstatus_ua]	Status of the voltage supply UA	ok: No error	ro ¹
		• fault: Error	

Name	Description	Value range	Access
[current]	Present current intensity of the device supply US (value in milliamps)	• 0: 0 mA	ro ¹
		• 4000: 4000 mA	
[voltage_ua]	Current voltage of the device supply UA (value in millivolts)	• 0: 0 mV	ro ¹
		• 4000: 4000 mV	

¹ Read only

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Processdata] menu is active.
- Select the [Processdatamaster] submenu.
- \triangleright Menu page shows the status and diagnostic information of the device.

9.2.4.2 Setting the counter value

Available parameters:

Name	Description	Value range	Access
[counter]	Value of the counter x (x: 12)		rw ¹

¹ Read and write

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Processdata] menu is active.
- ► Select the [Timer[x]] submenu (x: 1...2).
 - \triangleright The menu page shows the current settings.
- Enter the counter value.
- ▶ Click on ≯ to save the changes to the device.
- \triangleright The new counter value is active.

9.2.4.3 Reading the status and diagnostic data of the port

Available parameters:

Name	Description	Value range	Access
[current_us]	Present current intensity of the volt- age supply US (value in milliamps)	• 0: 0 mA	ro ¹
		• 2000: 2000 mA	
[current_ua]	Present current intensity of the volt- age supply UA (value in milliamps)	• 0: 0 mA	ro ¹
		• 2000: 2000 mA	
[status]	Status of the supply voltages US and	ok: No error	ro ¹
	UA	fault us: Error in US	
		fault ua: Error in UA	
		fault us and ua: Error in US and UA	

¹ Read only

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Processdata] menu is active.

Select the [lolinkmaster] > [port[x]] > [powercontrol] submenu (x:1...8).

 \triangleright The menu page shows status and diagnostic information.

9.2.4.4 Reading and writing input and output data

Available parameters:

• IO-Link ports (class A)

Name	Description	Value range	Access
[pin2in]	Digital input (pin 4)	• 0: LOW	ro ¹
[iolinkdevice] > [pdin]	Input data (pin 4)	Operating mode DI • 0x00: LOW • 0x1: HIGH Operating mode IO-Link • Input value in hexadecimal representation	ro ^{1 2}
[iolinkdevice] > [pdout]	Output data (pin 4)	Operating mode DO 0x00: LOW 0x1: HIGH Operating mode IO-Link Output value in hexadecimal representation 	rw ³⁴

¹ Read only

² Parameter only available if operating mode pin 4 (US) = IO-Link and IO-Link device is connected to the port

³ Read and write

⁴ The parameter can only be changed if no connection to the fieldbus controller is active

IO-Link ports (class B):

Name	Description	Value range	Access
[pin2out]	Digital output (pin 2)	0: LOW1: HIGH	rw ^{1 2}
[iolinkdevice] > [pdin]	Input data (pin 4)	Operating mode DI • 0x00: LOW • 0x1: HIGH Operating mode IO-Link • Input value in hexadecimal representation	ro ^{3 4}
[iolinkdevice] > [pdout]	Output data (pin 4)	Operating mode DO 0x00: LOW 0x1: HIGH Operating mode IO-Link Output value in hexadecimal representation 	rw ^{1 2}

¹ Read and write

 2 $\,$ The parameter can only be changed if no connection to the fieldbus controller is active

³ Read only

⁴ Parameter only available if operating mode pin 4 (US) = IO-Link and IO-Link device is connected to the port

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Processdata] menu is active.
- ► Select the [lolinkmaster] > [port[x]] submenu (x: 1...8).
- \triangleright The menu page shows input and output data
- Optional: Enter the desired value in the output data fields.
- ▶ Click on ✓ to save the changes to the device.
- \triangleright The set process value is set.

9.2.4.5 Reading and writing information about IO-Link devices

Available parameters:

Name	Description	Value range	Access
[vendorid]	Vendor ID of the IO-Link device	065535	ro ¹
[deviceid]	Device ID of the IO-Link device	016777215	ro ¹
[productname]	Article number of the IO-Link device	e.g. TCC501	ro ¹
[serial]	Serial number of the IO-Link device (12 digits)	e.g., 000008500706	ro ¹
[status]	State of the IO-Link device	 state not connected: Device is not connected state preoperate: Device is in PREOPERATE state state operate: Device is in OPERATE state state communication error: Device has communication error 	ro ¹
[applicationspecifictag]	Application-specific tag	***: *** (Default)	rw ²

¹ read only; Parameter only available if operating mode pin 4 (US) = IO-Link and IO-Link device is connected to port

² Parameter only available if operating mode pin 4 (US) = IO-Link and IO-Link device is connected to the port

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Processdata] menu is active.
- ► Select the [lolinkmaster] > [port[x]] > [iolinkdevice] submenu (x: 1...8).
- ▷ The menu page shows information about the IO-Link device.
- ▶ Optional: Enter the application-specific tag.
- ► Click on ✓ to save the changes to the device.

9.2.4.6 Reading IO-Link events

The device supports IO-Link events. IO-Link events are event and error messages. IO-Link events can be generated in the IO-Link master and in the connected IO-Link devices. IO-Link events generated in the IO-Link devices are forwarded to the IO-Link master and stored there.

An IO-Link event message has the following structure:

Byte 0…1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Event Code	Source	Validity	Туре	Mode	Instance
Legend					
Instance	IO-Link Event Qualifie	er: Trigger	1 byte	 0x00: unknown 0x01: PL (Physica 0x02: DL (Data La 0x03: AL (Applicat 0x04: APPL (Appli 	l Layer) yer) ion Layer) cation)
• Mode	IO-Link Event Qualifier: Event trigger		1 byte	 0x40: One-time ev (single shot) 0xC0: Error disapp 0x80: Error appear 	ent or warning beared red
• Туре	IO-Link Event Qualifier: Event category		1 byte	0x10: Notification0x20: Warning0x30: Error	
Validity	Validity of the process	s data	1 byte	0x00: Valid0x40: Invalid	

- Source IO-Link Event Qualifier: Event source
- Event Code IO-Link event code (bytes are swapped!)
- 1 byte 0x00: IO-Link device • 0xFF: IO-Link master
- bed!) 2 bytes \rightarrow IO-Link specification

Available parameters:

Name	Description	Value range	Access
[iolinkevent]	IO-Link event	See above	ro ^{1 2}

¹ Read only

² Parameter only available if operating mode pin 4 (US) = IO-Link and IO-Link device is connected to the port

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Processdata] menu is active.
- ► Select the [lolinkmaster] > [port[x]] > [iolinkdevice] submenu (x: 1...8).
- \triangleright The menu page shows IO-Link events of the port.

9.2.4.7 Reading port events

A port event contains information about events on the IO-Link port (e.g. IO-Link device connected or disconnected, change of the operating mode of the port).

Available parameters:

Name	Description	Value range	Access
[portevent]	Port event	DeviceStatus:	ro ¹
	Structure: 0x00ZZYY	0x00: No IO-Link device connected	
	0xYY: Device Status – status of the	0x40: Wrong IO-Link device connected	
	IO-Link device0xZZ: Connection Status – status of	 0x80: IO-Link device connected and in PREOPERATE state 	
	the connection	 0xFF: IO-Link device connected and in OPERATE state 	
		Connection Status:	
		0x00: Port disabled	
		 0x01: Port activated, but no device connected 	
		 0x02: Port activated and in "IO-Link" operating mode 	
		 0x03: Port activated and in "DI" operating mode 	
		 0x04: Port activated and in "DO" operating mode 	
		0x1B: Repetitions detected	
		0x1E: Short circuit detected at pin 4	
		0x42: Wrong revision of the IO-Link device	
		0x43: Wrong vendor ID (V1.1 revision)	
		0x44: Wrong device ID (V1.1 revision)	
		0x45: Wrong vendor ID (V1.0 revision)	
		0x46: Wrong device ID (V1.0 revision)	
		0x48: Wrong cycle time	

¹ Read only

Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ The [Processdata] menu is active.
- ► Select the [lolinkmaster] > [port[x]] submenu (x: 1...8).
- \triangleright The menu page shows the port event of the port.

45

9.2.5 Update firmware

The [Update] menu page allows you to update the firmware of the device: Requirements:

- ✓ IoT Core Visualizer has been started.
- ✓ New firmware has been downloaded. documentation.ifm.com
- Select the [Update] menu.
 - ▷ Menu page shows information about the current firmware version.

00-02-01-0f-c8-92 - online					2.6.19
Notification Elements	Parameter	Processdata	Update		
Firmware					
00-02-01-0f-c8-92/firmware		Container			
Version:	AL1x7x_cn_pl_v3.3.40	Chunk size:	4096		
Туре:	firmware C	Max size:	41943)4 J	
Load software file		Size:			
Update					

- Click on [Load software file] and select a new firmware file (*.bin).
- Click on [Update] to start the update process.
- \triangleright The firmware of the device is updated.
- \triangleright The progress of the update process is displayed.
- > After successful update: The device reboots automatically.

9.3 EtherCAT

9.3.1 Installing the ESI file

For mapping of the device in an EtherCAT projection software, ifm electronic provides a device description file in ESI format (ESI - Electronic Slave Information). In the ESI file, all parameters, process data and their valid status and diagnostic information are defined.

The ESI file is available on ifm's website: www.ifm.com

Example:

To install the ESI file in the TwinCAT 3.1 EtherCAT projection software:

- Download the ESI file.
- Copy the file to the following subdirectory of the TwinCAT installation directory: ...
 \3.1\Config\Io\EtherCAT
- Start TwinCAT.
 - Description The device description is loaded into the device catalogue.
- \triangleright TwinCAT can access data provided by the device.

9.3.2 Integrating the device into a project

The device is integrated into the automation project as an EtherCAT slave.

To integrate the device into a TwinCAT project:

Requirements:

- ✓ The ESI file of the device is installed in TwinCAT.
- ✓ The project contains an EtherCAT master to which the device is connected.
- ▶ In the [Solution Explorer]: Mark the EtherCAT master under the [I/O] node.
- ▶ Right-click the node of the EtherCAT master.
 - \triangleright The context menu appears.
- Click on [Add new item...].
 - \triangleright A dialogue window appears.
- ▶ Under [ifm electronic] > [ifm IO-Link Master], select the device.
- Click on [OK].
 - \triangleright The device has been added to the project.

- Save the project.
- \triangleright The device has been integrated into the TwinCAT project.

9.3.2.1 Using Ethernet over EtherCAT (EoE)

The device supports the Ethernet over EtherCAT (EoE) protocol.

To use EoE, the following conditions must be met:

- The EtherCAT master supports the EoE protocol.
- EoE is activated and configured on the EtherCAT master and the EtherCAT slave.

The configuration differs depending on the network topology used. The following example shows the configuration steps for a direct connection between a PC with TwinCAT and the device. The EtherCAT master is assigned to the Ethernet interface of the PC.

Requirements:

- ✓ The device is integrated into the project.
- ✓ IP parameters of the Ethernet interface of the TwinCAT PC are set (e.g. IP address: 192.168.3.1, subnet mask: 255.255.255.0)
- ▶ In the [Solution Explorer]: Select the node of the EtherCAT master.
 - \triangleright The detail window shows device settings.
- Select the [EtherCAT] tab.
 - ▷ The detail window shows EtherCAT settings.
- Click on [Advanced Settings...].
 - ▷ A dialogue window appears.
- Select the [EoE Support] menu item.
- Set the parameters as follows:

```
Advanced Settings
```

 State Machine Master Settings Slave Settings Cyclic Frames Distributed Clocks EoE Support Redundancy Emergency Diagnosis 	EoE Support Virtual Ethernet Sv ☑ Enable Max Ports: Max Frames: Max MAC Ids:	2 ÷ 120 ÷ 100 ÷	Windows Netw Connect to Windows IP IP Enat Changes re	vork TCP/IP Stack Routing ble Router equire system reboot!	
	EtherCAT Mailbox	Gateway	Virtual MAC:	00 00 00 00 00 00 00]

- Click on [OK].
- \triangleright The EoE protocol is activated and configured on the EtherCAT master.
- ▶ In the [Solution Explorer]: Select the node of the device.
 - \triangleright The detail window shows device settings.
- Select the [EtherCAT] tab.
 - \triangleright The detail window shows EtherCAT settings.
- Click on [Advanced Settings...].
 - \triangleright A dialogue window appears.
- Select the [Mailbox] > [EOE] menu item.

Advanced Settings

	EoE	
⊡ Mailbox CoE	Virtual Ethernet Port	
FoE	Virtual MAC Id:	02 01 05 10 03 ea
<mark>EoE</mark>	Switch Port	
i AoE □ Distributed Clearly	IP Port	
ESC Access	⊖ DHCP	
	IP Address	192.168.3.5
	Subnet Mask:	255.255.255.0
	Default Gateway:	192.168.3.1
	DNS Server:	
	DNS Name:	Box_1ifm_IO_L

- Activate the [Virtual Ethernet Port] parameters.
- Activate the [IP Port] parameters.
- Enter IP settings of the device in the Ethernet network.
- Click on [OK].
- ▷ The EoE protocol is activated and configured on the EtherCAT slave.
- $Descript{S}$ The device can be reached from the TwinCAT PC via the set IP address.

9.3.3 Setting the startup parameters

In the factory settings, a set of preset parameters is defined as startup parameters. The parameters are transmitted to the device and activated when the EtherCAT connection is established.

In addition, the following parameters with user-specific values can be activated as startup parameters for each port of the device:

Parameter	Description	Reference
Process Data In Length	Length of the cyclic input data	Startup parameters (\Rightarrow \Box 61)
Process Data Out Length	Length of the cyclic output data	
Master Control	Operating modes of the port	

To set the startup parameters:

Requirements:

- ✓ The TwinCAT project has been created.
- ✓ The device is integrated into the project.
- ▶ In the [Solution Explorer]: Select the node of the device.

 \triangleright The detail window shows device settings.

- Select the [Startup] tab.
 - \triangleright The detail window shows configuration options of the device.
- ► Configure the startup parameters.
- Save the project.
- \triangleright The startup parameters are transmitted to the device and activated when an EtherCAT connection is established the next time.

9.3.4 Configuring the IO-Link master

The IO-Link master is configured via the Manufacturer Specific Area (0x2000) object area.

Access options:

• Using CANopen over EtherCAT (\rightarrow \Box 58)

Available parameters:

Parameter	Description	Reference
Installation Location	Installation location can be set by the user	Manufacturer-Specific Area (0x2000 - 0x5FFF) (→ □ 74)
Equipment ID	Equipment ID can be set by the user	
Reset to Factory	Resetting the device	
Device Localization	Trigger the flashing of the status LEDs	
Current Use case	Access rights to the device	

9.3.5 Configuring the ports

The ports are configured via the Configuration Area (0x8000) object area.

Changes to the port configuration in online mode must be activated separately.

Activate changes with the Reconfigure (0x80n8, subindex 0x02) parameter.

!

The device does not have a failsafe function for the outputs of the ports. If the EtherCAT connection is interrupted, the last output values present are written and marked as invalid.

A separate configuration area is available for each port.

Available parameters:

Parameter	Description	Reference
Device ID	Device ID validation	Configuration Area (0x8000 - 0x8FFF)
Vendor ID	Vendor ID validation	$(\rightarrow \Box 79)$
IO-Link revision	IO-Link revision validation	
Cycle Time	Cycle time	
Process Data In Length	Length of the cyclic input data	
Process Data Out Length	Length of the cyclic output data	
Master Control	Operating mode (pin 4)	
Validation ID	Validation methods and data storage settings	
Reconfigure	Activate changes	
Byte Swap	Set arrangement of the bytes in the pro- cess data	
Mode UA	Operating mode (pin 2)	
Current Limit UA	Restriction of current UA	
Current Limit US	Restriction of current US	

9.3.6 Configuring process data

The cyclic input and output data at pin 4 of the IO-Link ports is configured via the EtherCAT slots. The user can assign a module to each slot. The assigned module defines which data is transmitted.

Available slots:

Slot	Description	Reference
IO-Link Ch.1	Process data IO-Link port 1	IO-Link Ch.1 (\rightarrow \Box 62)
IO-Link Ch.2	Process data IO-Link port 2	IO-Link Ch.2 (\rightarrow \square 63)
IO-Link Ch.3	Process data IO-Link port 3	IO-Link Ch.3 (\rightarrow \square 64)
IO-Link Ch.4	Process data IO-Link port 4	IO-Link Ch.4 (\rightarrow \Box 65)
IO-Link Ch.5	Process data IO-Link port 5	IO-Link Ch.5 (\rightarrow \square 66)
IO-Link Ch.6	Process data IO-Link port 6	IO-Link Ch.6 (\rightarrow \Box 67)
IO-Link Ch.7	Process data IO-Link port 7	IO-Link Ch.7 (\rightarrow \Box 68)
IO-Link Ch.8	Process data IO-Link port 8	IO-Link Ch.8 (→ □ 69)

Requirements:

- ✓ The TwinCAT project has been created.
- ✓ The device is integrated into the project.
- ▶ In the [Solution Explorer]: Select the node of the device.
 - \triangleright The detail window shows device settings.
- Select the [Slots] tab.
 - Dash The detail window shows slots and the modules available in each case.
- Assign the desired module to each slot.
- \triangleright Cyclic input and output data has been configured.

The digital outputs at pin 2 of ports X1...X4 are activated via the port configuration (\rightarrow Configuring the ports \square 51).

- Set the [Mode UA] = [DO] parameter in the port configuration of the desired ports.
- \triangleright Digital outputs at pin 2 of the ports can be switched.

9.3.7 Accessing the process data

The cyclic input and output data at pin 4 of the ports is stored in the Inputs (0x6000) and Outputs (0x7000) object areas.

To check the validity of the cyclic process data, read and evaluate the Port Qualifier Information (PQI) of the port.

!

Even if the EtherCAT connection is interrupted, the PQI indicates that the process data is valid. This may have an unintended impact on the control process.

► Take suitable measures to detect an interruption of the EtherCAT connection.

Available parameters:

Parameter	Description	Reference
Input Process Data	Cyclic input data of the ports	Input Area (0x6000 - 0x6FFF) (\rightarrow \Box 77)
Output Process Data	Cyclic output data of the ports	Output Area (0x7000 - 0x7FFF) (→ □ 78)

In the "IO-Link" operating mode, max. 32 bytes each are available for input data and output data for each port. The number of bytes transmitted is set when configuring the cyclic input and output data.

In the "Digital Input (DI)" operating mode, the process value of the port is mapped in the 1st byte of the input data (object 0x60n0, subindex 0x01).

In the "Digital Output (DO)" operating mode, the process value of the port is mapped in the 1st byte of the output data (object 0x70n0, subindex 0x01).

Valid values:

- 0x00: OFF
- 0x01: ON

The digital output data of pin 2 of ports X1...X4 is stored in the Device Area (0xF000).

Parameter	Description	Reference
Pin 2 Digital Output Con- trol	Digital output data at pin 2 of ports X1X4	Device Area (0xF000 - 0xFFFF) (\Rightarrow \square 84)

9.3.7.1 TwinCAT-specific information

During the configuration of the slot, TwinCAT automatically creates variable nodes for the process data in the Solution Explorer:

Available objects:

• The cyclic input and output data at pin 4 of the port is grouped in the folders below the respective EtherCAT module.

Node group	Node	Description
TxPDO	 input byte 0 input byte 1 input byte n¹ 	Cyclic input data of the port (pin 4)
RxPDO	 output byte 0 output byte 1 output byte m² 	Cyclic output data of the port (pin 4)

¹ n: [3...31]; depending on the length of the configured input data of the port

 2 m: [3...31]; depending on the length of the configured output data of the port

• The digital output data at pin 2 of the ports is located as a subfolder below the device node:

Node group	Variables	Description
RxPDO Mapping of Pin 2 Outputs	Pin 2 Digital Output Control	Digital output data of the port (pin 2)

9.3.8 Reading identification information

Identification information of the device is stored in the Communication Area (0x1000).

Access options:

• Using CANopen over EtherCAT (\rightarrow \Box 58)

Available information:

Parameter	Description	Reference
Device Type	EtherCAT device profile	Communication Area (0x1000 - 0x1FFF)
Manufacturer Device Name	Device Name	$(\rightarrow \square \ 70)$
Manufacturer Hardware Version	Hardware version	
Manufacturer Software Version	Software version	
Vendor ID	Vendor identification	
Product Code	Article number	
Revision Number	Hardware version	
Serial number	Serial number	

9.3.9 Reading diagnostic and status information

The diagnostic and status information of the IO-Link master and the connected IO-Link devices is stored in different object areas.

Access options:

• Using CANopen over EtherCAT (\rightarrow \Box 58)

Available information:

Parameter	Description	Reference	
Diagnosis History	Reading IO-Link events (\rightarrow \Box 57)	Communication Area (0x1000 - 0x1FFF) (\rightarrow \square 70)	
Timestamp	Operating time of the device (time stamp)		
Device ID	Device ID of the IO-Link device	Information Area (0x9000 - 0x9FFF)	
Vendor ID	Vendor ID of the IO-Link device	$(\rightarrow \square 81)$	
IO-Link revision	IO-Link revision of the IO-Link device		
Frame Capability			
Cycle Time	Cycle time		
PD In Length	Length of the cyclic input data		
PD Out Length	Length of the cyclic output data		
Serial number IO-Link Device	Serial number of the IO-Link device		
Current UA (Pin 2/5)	Present current intensity of the voltage UA (pin 2/5)		
Current US (Pin 1/3)	Present current intensity of the voltage US (pin 1/3)		
IO-Link State	State of the IO-Link	Diagnosis Area (0xA000 - 0xAFFF)	
Lost frames	Number of lost frames	(→ □ 83)	
Device status	Diagnostic information of the IO-Link de- vice	Device Area (0xF000 - 0xFFFF) (→ □ 84)	

Parameter	Description	Reference
Port Qualifier Information (PQI)	Diagnostic information of the ports	Device Area (0xF000 - 0xFFFF)
Port Status UA/US	Status of the supply voltages UA/US at the ports	(→ □ 84)
Global Status UA/US	Status of the supply voltages UA/US of the device	
Global Voltage UA	Present voltage UA	
Global Current UA	Present current intensity UA	
Global Voltage US	Present voltage US	
Global Current US	Present current intensity US	

9.3.9.1 TwinCAT-specific information

When the device is integrated into an EtherCAT project, TwinCAT automatically creates variable nodes for diagnostic and status information in the Solution Explorer. The data is grouped in folders under the device node.

Available objects:

Node group	Node	Description
TxPDO IO-Link Device Sta- tus	 State of IO-Link Ch.1 State of IO-Link Ch.2 State of IO-Link Ch.8 	Status of the IO-Link ports X1X8 Device Area (0xF000 - 0xFFFF) (→ □ 84)
TxPDO IO-Link Port Qualifier	 Qualifier of IO-Link Ch.1 Qualifier of IO-Link Ch.2 Qualifier of IO-Link Ch.8 	Port Qualifier Information (PQI) of the IO-Link port X1X8 Device Area (0xF000 - 0xFFFF) (→ □ 84)
TxPDO New Diagnosis Message available	New Message Available Flag	Display of a new IO-Link event Communication Area (0x1000 - 0x1FFF) (\rightarrow \Box 70)
TxPDO Timestamp	• Timestamp	timestamp Communication Area (0x1000 - 0x1FFF) (\Rightarrow \Box 70)
TxPDO Power Supply Sta- tus	 Per port status UA/US Global status UA/US Global voltage UA Global current UA Global voltage US Global current US 	Status of the voltages UA/US of the ports X1X8 Status of the voltages UA/US of the device Current values of the current intensities and voltages UA/ US of the device Device Area (0xF000 - 0xFFFF) (\rightarrow \square 84)
TxPDO Vendor Specific IO Info Ch.1	Current UA Ch.1 Current US Ch.1	Current intensity of the voltages UA/US of port X1 Information Area (0x9000 - 0x9FFF) (\rightarrow \square 81)
TxPDO Vendor Specific IO Info Ch.2	Current UA Ch.2 Current US Ch.2	Current intensity of the voltages UA/US of port X2 Information Area (0x9000 - 0x9FFF) (\rightarrow \square 81)
TxPDO Vendor Specific IO Info Ch.3	Current UA Ch.3 Current US Ch.3	Current intensity of the voltages UA/US of port X3 Information Area (0x9000 - 0x9FFF) (\rightarrow \square 81)
TxPDO Vendor Specific IO Info Ch.4	Current UA Ch.4 Current US Ch.4	Current intensity of the voltages UA/US of port X4 Information Area (0x9000 - 0x9FFF) (\Rightarrow 181)
TxPDO Vendor Specific IO Info Ch.5	Current UA Ch.5 Current US Ch.5	Current intensity of the voltages UA/US of port X5 Information Area (0x9000 - 0x9FFF) (\rightarrow \square 81)
TxPDO Vendor Specific IO Info Ch.6	Current UA Ch.6 Current US Ch.6	Current intensity of the voltages UA/US of port X6 Information Area (0x9000 - 0x9FFF) (\Rightarrow \square 81)
TxPDO Vendor Specific IO Info Ch.7	Current UA Ch.7Current US Ch.7	Current intensity of the voltages UA/US of port X7 Information Area (0x9000 - 0x9FFF) (\rightarrow \square 81)

Node group	Node	Description
TxPDO Vendor Specific IO Info Ch.8	Current UA Ch.8Current US Ch.8	Current intensity of the voltages UA/US of port X8 Information Area (0x9000 - 0x9FFF) (\rightarrow \Box 81)

9.3.10 Accessing IO-Link devices

The device supports the following ISDU communication mechanism. Via ISDU (Indexed Service Data Unit), the user can acyclically access parameters, process data as well as status and diagnostic information of the connected IO-Link devices.

Access takes place via index and subindex of the respective object.

A separate area for processing acyclic commands is available for each port.

Availability data of the IO-Link device: ightarrow IO Device Description (IODD) of the IO-Link device

The following methods are available for acyclic access to the objects of the IO-Link device:

- Using ADS over EtherCAT (\Rightarrow \Box 57)
- Using CANopen over EtherCAT (\rightarrow \Box 58)

9.3.11 Reading IO-Link events

The device supports IO-Link events.

IO-Link events are stored in the diagnosis history (0x10F3): Communication Area (0x1000 - 0x1FFF) (\Rightarrow \Box 70)

The IO-Link master stores max. 64 events.

The individual events are stored in a ring buffer. The device supports the following operating modes for writing the buffer.

- Overwrite Mode: If the buffer is full, the oldest event is overwritten.
- Acknowledge Mode: Events are only overwritten when they have been read and acknowledged.

The operating mode is configured via the flags (0x10F3, subindex 0x05). The events are stored in the subindices 0x06...0x46.

9.3.12 Using acyclic services

The device supports the following mailbox services for acyclic read and write access:

- Using ADS over EtherCAT (\Rightarrow \Box 57)
- Using CANopen over EtherCAT (\rightarrow \Box 58)

9.3.12.1 Using ADS over EtherCAT

The device supports mailbox communication via ADS over EtherCAT (AoE). The AoE protocol allows uninterrupted acyclic access to the connected IO-Link devices during normal operation. Access via AoE to the IO-Link master is not supported.

AoE uses the object area 0xF302 for read and write access.

Observe the TwinCAT help!

The following function blocks are available for access:

- ADS read: Read access
- ADS write: Write access

1

With AoE, IO-Link parameters with a length of max. 80 bytes can be read or written.

Notes on the input assignment of the ADS function blocks:

Input	Description	Value range
PORT	ADS communication port = 0x1000 + port number	 0x1001: Port 1 0x1002: Port 2 0x1003: Port 3 0x1004: Port 4 0x1005: Port 5 0x1006: Port 6 0x1007: Port 7 0x1008: Port 8
IDXGRP	AoE Index Group	0xF302
IDXOFFS	Index Offset • Bit 07: IO-Link Subindex • Bit 815: 0x00 • Bit 1631: IO-Link Index	e.g. access to index 21, subindex 0: IDXOFFS = 0x00 21 00 00
ERRID	ADS Error Code • Bit 015: Error code of the IO-Link device • Bit 1631: ADS device error = 0x0700	e.g. access to parameters of the IO-Link de- vice refused: ERRID = 0x0700 8023

9.3.12.2 Using CANopen over EtherCAT

The device supports mailbox communication via CANopen over EtherCAT (CoE). The CoE protocol allows acyclic access to the IO-Link master and the connected IO-Link devices.

CoE uses the IO-Link Acyclic Command object area: Manufacturer-Specific Area (0x2000 - 0x5FFF) (\Rightarrow \Box 74)

A separate object area is available for each port.

▶ Observe the TwinCAT help!

In TwinCAT, access via CoE can be implemented via the following options:

- 1. [CoE Online] tab in the device settings
- 2. Function blocks:
 - FB_EcCoESdoRead: Read SDO of an EtherCAT slave
 - FB_EcCoESdoWrite: Read SDO of an EtherCAT slave

Notes on the input assignment of the CoE function blocks:

Input	Description	Value range
sNetId	AMS net ID of the EtherCAT master to which the de- vice is connected	Depending on the project; e.g. 172.16.131.2.1
nSlaveAddr	EtherCAT address of the port on the IO-Link master: 0x1000 + port number	 0x1001: Port 1 0x1002: Port 2 0x1003: Port 3 0x1004: Port 4 0x1005: Port 5 0x1006: Port 6 0x1007: Port 7 0x1008: Port 8
nSubIndex	 IO-Link subindex of the date Depending on the device; → IODD description of the IO-Link device 	e.g. subindex 0: 0x00
nIndex	 IO-Link index of the date Depending on the device; → IODD description of the IO-Link device 	e.g. subindex 21: 0x0015

Principle of acyclic command processing

General procedure of acyclic communication:

The IO-Link master can only process one CoE command request at a time. If another CoE request is started during an active request, the device responds with an error (SDO abort code: 0x06090030).

1. Writing a command request

- ▶ In the command buffer (object 0x310n, subindex 0x01): Write command data
- \triangleright Request data is transmitted.
- \triangleright Processing of the command is started.
- \triangleright The request channel is blocked.

2. Checking the status of command processing

- ▶ In the status byte (object 031n, subindex 0x02): Read status
- > Status == 0xFF: Request is still being processed, repeat step 2
- ▷ Status < 0xFF: Command processing finished, continue with step 3

3. Reading a command response

- ▶ In the response buffer (object 0x310n, subindex 0x03): Read and evaluate the response data
- \triangleright Blocking of the request channel is cancelled.
- \triangleright The next command can be executed.

10 Maintenance, repair and disposal

The operation of the device is maintenance-free.

Dispose of the device in an environmentally friendly way in accordance with the applicable national regulations when it is no longer used.

10.1 cleaning

- Disconnect the device from the voltage supply.
- Clean the device from dirt using a soft, chemically untreated and dry cloth.
- ▶ In case of severe soiling, use a damp cloth.

Do not use any caustic cleaning agents for cleaning!

10.2 Update firmware

The firmware of the device can be updated using the following methods:

- ifm IoT Core Visualizer: Update firmware (\rightarrow \Box 46)
- ifm moneo: Update firmware (\rightarrow \Box 28)

11 Appendix

11.1 EtherCAT

11.1.1 Startup parameters

Index	Subindex	Name	Possible values	Data type / access						
0x8000		Port 1: Startup parameters								
	0x24	Process Data In Length	• 0x00: 0 Byte	UINT8 / rw						
			• 0x01: 4 Bytes							
			• 0x02: 8 Bytes							
			• 0x03: 16 Bytes							
			• 0x04: 32 Bytes							
	0x25	Process Data Out Length	• 0x00: 0 Byte	UINT8 / rw						
			• 0x01: 4 Bytes							
			• 0x02: 8 Bytes							
			• 0x03: 16 Bytes							
			• 0x04: 32 Bytes							
	0x28	Master Control • 0x0000: Deactivated		UINT16 / rw						
			0x0001: Digital Input							
			0x0002: Digital Output							
			• 0x0003: IO-Link							
0x8010		Port 2: Startup parameters (struct	ure: Index 0x8000)							
0x8020		Port 3: Startup parameters (struct	ure: Index 0x8000)							
0x8030		Port 4: Startup parameters (struct	ure: Index 0x8000)							
0x8040		Port 5: Startup parameters (struct	ure: Index 0x8000)							
0x8050		Port 6: Startup parameters (struct	ure: Index 0x8000)							
0x8060		Port 7: Startup parameters (struct	ure: Index 0x8000)							
0x8070		Port 8: Startup parameters (struct	ure: Index 0x8000)							

11.1.2 EtherCAT modules

11.1.2.1 IO-Link Ch.1

Slot	Description	Available modules	Length [bytes]
1	Port 1: Port configuration	Deactivated: Port disabled	0
	(pin 4)	Digital_IN: "Digital input" operating mode	1/0
		Digital_OUT: "Digital output" operating mode	0 / 1
		 IOL_In_4Byte: "IO-Link" operating mode – 4 byte input data 	4 / 0
		 IOL_In_8Byte: "IO-Link" operating mode – 8 byte input data 	8/0
		 IOL_In_16Byte: "IO-Link" operating mode – 16 byte input data 	16 / 0
		 IOL_In_32Byte: "IO-Link" operating mode – 32 byte input data 	32 / 0
		 IOL_Out_4Byte: "IO-Link" operating mode – 4 byte output data 	0 / 4
		 IOL_Out_8Byte: "IO-Link" operating mode – 8 byte output data 	0/8
		IOL_Out_16Byte: "IO-Link" operating mode – 16 byte output data	0 / 16
		 IOL_Out_32Byte: "IO-Link" operating mode – 32 byte output data 	0 / 32
		 IOL_4/4_I/O-Bytes: "IO-Link" operating mode – 4-byte input data / 4-byte output data (default) 	4 / 4
		 IOL_8/8_I/O-Bytes: "IO-Link" operating mode – 8 byte input data / 8 byte output data 	8 / 8
		 IOL_4/16_I/O-Bytes: "IO-Link" operating mode – 4 byte input data / 16 byte output data 	4 / 16
		 IOL_16/4_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 4 byte output data 	16 / 4
		 IOL_16/16_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 16 byte output data 	16 / 16
		 IOL_32/32_I/O-Bytes: "IO-Link" operating mode – 32 byte input data / 32 byte output data 	32 / 32

11.1.2.2 IO-Link Ch.2

Slot	Description	Available modules	Length [bytes]
2	Port 2: Port configuration	Deactivated: Port disabled	0
	(pin 4)	Digital_IN: "Digital input" operating mode	1/0
		Digital_OUT: "Digital output" operating mode	0 / 1
		 IOL_In_4Byte: "IO-Link" operating mode – 4 byte input data 	4 / 0
		 IOL_In_8Byte: "IO-Link" operating mode – 8 byte input data 	8/0
		IOL_In_16Byte: "IO-Link" operating mode – 16 byte input data	16 / 0
		 IOL_In_32Byte: "IO-Link" operating mode – 32 byte input data 	32 / 0
		 IOL_Out_4Byte: "IO-Link" operating mode – 4 byte output data 	0 / 4
		 IOL_Out_8Byte: "IO-Link" operating mode – 8 byte output data 	0/8
		IOL_Out_16Byte: "IO-Link" operating mode – 16 byte output data	0 / 16
		 IOL_Out_32Byte: "IO-Link" operating mode – 32 byte output data 	0 / 32
		 IOL_4/4_I/O-Bytes: "IO-Link" operating mode – 4-byte input data / 4-byte output data (default) 	4 / 4
		IOL_8/8_I/O-Bytes: "IO-Link" operating mode – 8 byte input data / 8 byte output data	8/8
		 IOL_4/16_I/O-Bytes: "IO-Link" operating mode – 4 byte input data / 16 byte output data 	4 / 16
		 IOL_16/4_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 4 byte output data 	16 / 4
		IOL_16/16_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 16 byte output data	16 / 16
		 IOL_32/32_I/O-Bytes: "IO-Link" operating mode – 32 byte input data / 32 byte output data 	32 / 32

11.1.2.3 IO-Link Ch.3

Slot	Description	Available modules	Length [bytes]		
3	Port 3: Port configuration	Deactivated: Port disabled	0		
((pin 4)	Digital_IN: "Digital input" operating mode			
		Digital_OUT: "Digital output" operating mode	0 / 1		
		 IOL_In_4Byte: "IO-Link" operating mode – 4 byte input data 	4 / 0		
		 IOL_In_8Byte: "IO-Link" operating mode – 8 byte input data 	8/0		
		 IOL_In_16Byte: "IO-Link" operating mode – 16 byte input data 	16 / 0		
		 IOL_In_32Byte: "IO-Link" operating mode – 32 byte input data 	32 / 0		
		 IOL_Out_4Byte: "IO-Link" operating mode – 4 byte output data 	0/4		
		 IOL_Out_8Byte: "IO-Link" operating mode – 8 byte output data 	0/8		
		 IOL_Out_16Byte: "IO-Link" operating mode – 16 byte output data 	0 / 16		
		 IOL_Out_32Byte: "IO-Link" operating mode – 32 byte output data 	0 / 32		
		 IOL_4/4_I/O-Bytes: "IO-Link" operating mode – 4-byte input data / 4-byte output data (default) 	4 / 4		
		 IOL_8/8_I/O-Bytes: "IO-Link" operating mode – 8 byte input data / 8 byte output data 	8/8		
		 IOL_4/16_I/O-Bytes: "IO-Link" operating mode – 4 byte input data / 16 byte output data 	4 / 16		
		 IOL_16/4_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 4 byte output data 	16 / 4		
		 IOL_16/16_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 16 byte output data 	16 / 16		
		 IOL_32/32_I/O-Bytes: "IO-Link" operating mode – 32 byte input data / 32 byte output data 	32 / 32		

11.1.2.4 IO-Link Ch.4

Slot	Description	Available modules	Length [bytes]		
4	Port 4: Port configuration	Deactivated: Port disabled	0		
	(pin 4)	Digital_IN: "Digital input" operating mode			
		Digital_OUT: "Digital output" operating mode			
		 IOL_In_4Byte: "IO-Link" operating mode – 4 byte input data 	4 / 0		
		 IOL_In_8Byte: "IO-Link" operating mode – 8 byte input data 	8/0		
		 IOL_In_16Byte: "IO-Link" operating mode – 16 byte input data 	16 / 0		
		IOL_In_32Byte: "IO-Link" operating mode – 32 byte input data	32 / 0		
		 IOL_Out_4Byte: "IO-Link" operating mode – 4 byte output data 	0/4		
		 IOL_Out_8Byte: "IO-Link" operating mode – 8 byte output data 	0/8		
		IOL_Out_16Byte: "IO-Link" operating mode – 16 byte output data	0 / 16		
		 IOL_Out_32Byte: "IO-Link" operating mode – 32 byte output data 	0 / 32		
		 IOL_4/4_I/O-Bytes: "IO-Link" operating mode – 4-byte input data / 4-byte output data (default) 	4 / 4		
		 IOL_8/8_I/O-Bytes: "IO-Link" operating mode – 8 byte input data / 8 byte output data 	8/8		
		 IOL_4/16_I/O-Bytes: "IO-Link" operating mode – 4 byte input data / 16 byte output data 	4 / 16		
		 IOL_16/4_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 4 byte output data 	16 / 4		
		 IOL_16/16_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 16 byte output data 	16 / 16		
		 IOL_32/32_I/O-Bytes: "IO-Link" operating mode – 32 byte input data / 32 byte output data 	32 / 32		

11.1.2.5 IO-Link Ch.5

Slot	Description	Available modules	Length [bytes]		
5	Port 5: Port configuration	Deactivated: Port disabled	0		
	(pin 4)	Digital_IN: "Digital input" operating mode			
		Digital_OUT: "Digital output" operating mode	0 / 1		
		 IOL_In_4Byte: "IO-Link" operating mode – 4 byte input data 	4 / 0		
		 IOL_In_8Byte: "IO-Link" operating mode – 8 byte input data 	8/0		
		 IOL_In_16Byte: "IO-Link" operating mode – 16 byte input data 	16 / 0		
		IOL_In_32Byte: "IO-Link" operating mode – 32 byte input data	32 / 0		
		IOL_Out_4Byte: "IO-Link" operating mode – 4 byte output data	0 / 4		
		IOL_Out_8Byte: "IO-Link" operating mode – 8 byte output data	0/8		
		IOL_Out_16Byte: "IO-Link" operating mode – 16 byte output data	0 / 16		
		IOL_Out_32Byte: "IO-Link" operating mode – 32 byte output data	0 / 32		
		 IOL_4/4_I/O-Bytes: "IO-Link" operating mode – 4-byte input data / 4-byte output data (default) 	4 / 4		
		 IOL_8/8_I/O-Bytes: "IO-Link" operating mode – 8 byte input data / 8 byte output data 	8/8		
		 IOL_4/16_I/O-Bytes: "IO-Link" operating mode – 4 byte input data / 16 byte output data 	4 / 16		
		 IOL_16/4_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 4 byte output data 	16 / 4		
		IOL_16/16_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 16 byte output data	16 / 16		
		 IOL_32/32_I/O-Bytes: "IO-Link" operating mode – 32 byte input data / 32 byte output data 	32 / 32		

11.1.2.6 IO-Link Ch.6

Slot	Description	Available modules	Length [bytes]		
6	Port 6: Port configuration	Deactivated: Port disabled	0		
	(pin 4)	Digital_IN: "Digital input" operating mode			
		Digital_OUT: "Digital output" operating mode			
		 IOL_In_4Byte: "IO-Link" operating mode – 4 byte input data 	4 / 0		
		 IOL_In_8Byte: "IO-Link" operating mode – 8 byte input data 	8/0		
		 IOL_In_16Byte: "IO-Link" operating mode – 16 byte input data 	16 / 0		
		 IOL_In_32Byte: "IO-Link" operating mode – 32 byte input data 	32 / 0		
		 IOL_Out_4Byte: "IO-Link" operating mode – 4 byte output data 	0/4		
		 IOL_Out_8Byte: "IO-Link" operating mode – 8 byte output data 	0/8		
		 IOL_Out_16Byte: "IO-Link" operating mode – 16 byte output data 	0 / 16		
		 IOL_Out_32Byte: "IO-Link" operating mode – 32 byte output data 	0 / 32		
		 IOL_4/4_I/O-Bytes: "IO-Link" operating mode – 4-byte input data / 4-byte output data (default) 	4 / 4		
		 IOL_8/8_I/O-Bytes: "IO-Link" operating mode – 8 byte input data / 8 byte output data 	8/8		
		 IOL_4/16_I/O-Bytes: "IO-Link" operating mode – 4 byte input data / 16 byte output data 	4 / 16		
		 IOL_16/4_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 4 byte output data 	16 / 4		
		IOL_16/16_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 16 byte output data	16 / 16		
		 IOL_32/32_I/O-Bytes: "IO-Link" operating mode – 32 byte input data / 32 byte output data 	32 / 32		

11.1.2.7 IO-Link Ch.7

Slot	Description	Available modules	Length [bytes]		
7	Port 7: Port configuration	Deactivated: Port disabled	0		
(t	(pin 4)	Digital_IN: "Digital input" operating mode			
		Digital_OUT: "Digital output" operating mode	0 / 1		
		 IOL_In_4Byte: "IO-Link" operating mode – 4 byte input data 	4 / 0		
		 IOL_In_8Byte: "IO-Link" operating mode – 8 byte input data 	8/0		
		 IOL_In_16Byte: "IO-Link" operating mode – 16 byte input data 	16 / 0		
		IOL_In_32Byte: "IO-Link" operating mode – 32 byte input data	32 / 0		
		IOL_Out_4Byte: "IO-Link" operating mode – 4 byte output data	0 / 4		
		IOL_Out_8Byte: "IO-Link" operating mode – 8 byte output data	0/8		
		IOL_Out_16Byte: "IO-Link" operating mode – 16 byte output data	0 / 16		
		IOL_Out_32Byte: "IO-Link" operating mode – 32 byte output data	0 / 32		
		 IOL_4/4_I/O-Bytes: "IO-Link" operating mode – 4-byte input data / 4-byte output data (default) 	4 / 4		
		 IOL_8/8_I/O-Bytes: "IO-Link" operating mode – 8 byte input data / 8 byte output data 	8/8		
		 IOL_4/16_I/O-Bytes: "IO-Link" operating mode – 4 byte input data / 16 byte output data 	4 / 16		
		 IOL_16/4_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 4 byte output data 	16 / 4		
		IOL_16/16_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 16 byte output data	16 / 16		
		 IOL_32/32_I/O-Bytes: "IO-Link" operating mode – 32 byte input data / 32 byte output data 	32 / 32		

11.1.2.8 IO-Link Ch.8

Slot	Description	Available modules	Length [bytes]		
8	Port 8: Port configuration	Deactivated: Port disabled	0		
	(pin 4)	Digital_IN: "Digital input" operating mode			
		Digital_OUT: "Digital output" operating mode	0 / 1		
		 IOL_In_4Byte: "IO-Link" operating mode – 4 byte input data 	4 / 0		
		 IOL_In_8Byte: "IO-Link" operating mode – 8 byte input data 	8/0		
		 IOL_In_16Byte: "IO-Link" operating mode – 16 byte input data 	16 / 0		
		 IOL_In_32Byte: "IO-Link" operating mode – 32 byte input data 	32 / 0		
		 IOL_Out_4Byte: "IO-Link" operating mode – 4 byte output data 	0/4		
		 IOL_Out_8Byte: "IO-Link" operating mode – 8 byte output data 	0/8		
		 IOL_Out_16Byte: "IO-Link" operating mode – 16 byte output data 	0 / 16		
		 IOL_Out_32Byte: "IO-Link" operating mode – 32 byte output data 	0 / 32		
		 IOL_4/4_I/O-Bytes: "IO-Link" operating mode – 4-byte input data / 4-byte output data (default) 	4 / 4		
		 IOL_8/8_I/O-Bytes: "IO-Link" operating mode – 8 byte input data / 8 byte output data 	8/8		
		 IOL_4/16_I/O-Bytes: "IO-Link" operating mode – 4 byte input data / 16 byte output data 	4 / 16		
		 IOL_16/4_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 4 byte output data 	16 / 4		
		 IOL_16/16_I/O-Bytes: "IO-Link" operating mode – 16 byte input data / 16 byte output data 	16 / 16		
		 IOL_32/32_I/O-Bytes: "IO-Link" operating mode – 32 byte input data / 32 byte output data 	32 / 32		

11.1.3 Object directory

Index	Subindex	Name	Possible values	Data type / access
0x1000		Device Type	0x184C1389: Modular Device Profile (MDP)	UINT32 / ro
0x1008		Manufacturer Device Name	"AL1433 "	STRING / ro
0x1009		Manufacturer Hardware Version		STRING / ro
0x100A		Manufacturer Software Version		STRING / ro
0x100B		Bootloader Version		STRING / ro
0x1018		Identity Object		
	• 0x1	Vendor ID	0x622: ifm electronic	UINT32 / ro
	• 0x2	Product Code	"AL1433 "	UINT32 / ro
	• 0x3	Revision Number	e.g., "AA"	UINT32 / ro
	• 0x4	Serial number	e.g., "000045632787"	UINT32 / ro
0x10F3		Diagnosis History		
	• 0x01	Maximum Messages	0x00: 0 Messages	UINT8 / ro
			• 0x40: 64 Messages	
	• 0x02	Newest Message	0x01: Message 1	UINT8 / ro
			• 0x40: Message 64	
	0x03 Newest Ack. Message		Override Mode:	UINT8 / rw
			0x00: Reading: When the message queue will be overwritten, the slave shall set subindex 0x03 to 0	
			 0x010x05: Writing: The slave shall return SDO-Abort with codes 0x06090030 (value range of parameter exceeded) or 0x0609003 	
			 0x060x46: Writing: Subindex 0x03 = Written value without checking 	
			 0x470xFF: Writing: SDO-Abort with codes 0x06090030 or 0x06090031(value of parameter written too high) 	
			Acknowledge Mode:	
			• 0x00:	
			 Read: No messages have been acknowledged so far 	
			 Writing: All acknowledged messages will be deleted. 	
			0x010x05: Writing: The slave shall return SDO-Abort with codes 0x06090030 (value range of parameter exceeded) or 0x06090032	
			• 0x060x46:	
			 Read: SubIndex of latest acknowledged diagnosis message 	
			 Writing: Messages are acknowledged 	
			0x470xFF: Writing: SDO-Abort with codes 0x06090030 or 0x06090031(value of parameter written too high)	

11.1.3.1 Communication Area (0x1000 - 0x1FFF)

Index	Subindex	Name	Possible values	Data type / access
0x10F3	• 0x04	New Message Available	 Override Mode: 0x0: Newest message was read 0x1: Newest message was not read Acknowledge Mode: 0x0: No acknowledged message 0x1: Diagnosis messages are available which can be acknowledged (Subindex 0x02 <> Subindex 0x03) 	BOOL / ro
	• 0x05	Flags	Mapping: Flags (\rightarrow \Box 72)	UINT16 / rw
	• 0x06	Diagnosis Message 01	Mapping: Diagnosis Message ($ ightarrow$ \Box 72)	OCTET STRING / ro
	• 0x40	Diagnosis Message 64	Mapping: Diagnosis Message (\Rightarrow \square 72)	OCTET STRING / ro
0x10F8		Timestamp (value in ns)		UINT64 / ro

Mapping: Flags

Word (Offset)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
n					rese	rved					OI	MS	DE	DW	DI	EE
Legend: • EE	E	Enable E	Emerge	ncy ser	iding (a	cc. to E	TG.100	0-6)	1 BIT	•	0x0: D as em)o not tr ergenc	ansmit y messa	diagnos	stic mes	sages
• DI	Disable information messages								1 BIT	•	 0x1: Transmit new diagnostic message as emergency message 0x0: Information messages are stored in the message queue (default) 0x1: Information messages are not stored in the message queue 					age ed in stored
• DW	Disable warning messages							1 BIT	•	 0x0: Warning messages are stored in the message queue (default) 0x1: Warning messages are not stored in the message queue 					in the red in	
• DE	Disable error messages							1 bit	•	 0x0: Error messages are stored in the message queue (default) 0x1: Error messages are not stored in th message queue 					he in the	
• MS	Ν	/lode se	lection						1 bit	•	0x0: Override Mode0x1: Acknowledge Mode					
• 01	Overwrite/discard information						С • • •	override 0x0: n 0x1: L overw 0x03 = .cknowle 0x0: n 0x1: B messa	Mode: o event Inackno ritten (b = 0 edge Mo o event suffer is ages an	t owledge ouffer ov ode: t full of u d new r	ed mess /errun); inackno messag	ages w Subind wledge es are	ere ex d			

Mapping: Diagnosis Message

Parameter	Description	Value range	Data type / access
Flags	Event qualifier type	0x0000: Notification	UINT16 / ro
		0x0001: Warning	
		• 0x0002: Error	
Text ID	Text ID as reference to diagno- sis text as defined in ESI file	0x0000: not Text ID	UINT16 / ro
		0x00010xFFFF: Text ID reference to ESI file	
Time Stamp	Time Stamp (value in ms)	0x0000000000000000xFFFFFFFFFFFFFFFF	UINT64 / to
Flags Parameter 1	Data type Parameter 1	• 0x0005: UINT8	UINT16 / ro
Parameter 1	IO-Link Port	• 0x01: Port 1	UINT8 / ro
		• 0x02: Port 2	
		• 0x03: Port 3	
		• 0x04: Port 4	
		• 0x05: Port 5	
		• 0x06: Port 6	
		• 0x07: Port 7	
		• 0x08: Port 8	
Flags Parameter 2	Data type Parameter 2	• 0x0006: UINT16	UINT16 / ro
Parameter 2	Event Code	Depending on the device: \rightarrow IODD description of the IO-Link device	UINT16 / ro
Parameter	Description	Value range	Data type / access
-------------------	-----------------------	-----------------	-----------------------
Flags Parameter 3	Data type Parameter 3	• 0x0005: UINT8	UINT16 / ro
Parameter 3	Event Qualifier		UINT8 / ro

Index	Subindex	Name	Possible values	Data type / access		
0x2001		Component Name	"EtherCAT IO-Link gateway"	STRING / ro		
0x2002		Vendor Name	"ifm electronic"	STRING / ro		
0x2003		Vendor URL	"www.ifm.com"	STRING / ro		
0x2004		Order Number	"AL1433"	STRING / ro		
0x2005		Manufacturing Date		STRING / ro		
0x2006		QS Date		STRING / ro		
0x2007		Installation Location	user-defined; max. 20 characters	STRING / rw		
0x200A		Equipment ID	user-defined; max. 20 characters	STRING / rw		
0x2F00		Reset to Factory	 0xA500: Factory Reset of System + NVMEM 0xA501: Factory Reset of System 	UINT16 / wo		
0x2F01		Device Localization	0x00: LED blinking for 5 s	UINT8 / wo		
0x2F02		Current Use Case	 0xA500: EtherCAT + IoT 0xA501: EtherCAT + IoT (read only) 0xA502: IoT (only) 	UINT16 / rw		
0x3100		Port 1: IO-Link Acyclic Command				
	• 0x01	Command Buffer	Mapping: Command Buffer (\rightarrow \Box 75)	ARRAY_OF_ BYTES / wo		
	• 0x02	Status	 0x00: Command completed: no error, no response data 	UINT16 / ro		
			0x01: Command completed: no error, response data available			
			0x02: Command completed: error, no response data			
			0x03: Command completed: error, response data available			
			OxFF: Command is executing (pending)			
	• 0x03	Response Buffer	Mapping: Response Buffer (\rightarrow \square 76)	ARRAY_OF_ BYTES / ro		
0x3101		Port 2: IO-Link Acyclic Command	(structure: → Index 0x3100)			
0x3102		Port 3: IO-Link Acyclic Command	(structure: → Index 0x3100)			
0x3103		Port 4: IO-Link Acyclic Command (structure: → Index 0x3100)				
0x3104		Port 5: IO-Link Acyclic Command (structure: → Index 0x3100)				
0x3105		Port 6: IO-Link Acyclic Command	(structure: → Index 0x3100)			
0x3106		Port 7: IO-Link Acyclic Command	(structure: → Index 0x3100)			
0x3107		Port 8: IO-Link Acyclic Command	(structure: → Index 0x3100)			

11.1.3.2 Manufacturer-Specific Area (0x2000 - 0x5FFF)

Mapping: Command Buffer

Byte	Bit							
(offset)	7	6	5	4	3	2	1	0
0	Command							
1	Index (LSB)							
2	Index (MSB)							
3	Subindex							
4	Length							
55+m		Data						

Legend:

•	Command	Command	1 BYTE	 0x00: Read 0x01: Write
•	Index	Index of the ISDU object	2 BYTE	• 0x00000xFFFF
•	Subindex	Subindex of the ISDU object	1 BYTE	• 0x000xFF
•	Length	Number m of bytes with user data (write commands only)	1 BYTE	 0x00: 0 Byte (Read) 0x01: 1 Byte (Write) 0xE8: 232 Bytes (Write)
•	Data	User data Data is transmitted to the ISDU object	m BYTE	Pro byte: • 0x000xFF

Mapping: Response Buffer

Byte	Bit							
(offset)	7	6	5	4	3	2	1	0
0	Status							
1	0x00							
2	Length							
3 3+m				Da	ta			

Legend:

•	[Status]	Status of the command processing	1 BYTE	 0x00: Command completed: no error, no response data 0x01: Command completed: no error, response data available 0x02: Command completed: error, no response data 0x03: Command completed: error, response data available 0xFF: Command is executing (pending)
•	[Length]	Number m of bytes with user data (only if status == 0x01 or 0x03)	1 BYTE	 0x00: 0 Byte (Read) 0x01: 1 Byte (Write) 0xE8: 232 Bytes (Write)
•	[Data]	User data If [Status] == 0x01: • 0232 bytes with data from the ISDU object If [Status] == 0x03: • byte 3: IO-Link Error Code • byte 4: Additional Code	m BYTE	Pro byte: • 0x000xFF

Index	Subindex	Name	Possible values	Data type / access				
0x6000		Port 1: Input Process Data	ort 1: Input Process Data					
	• 0x01	Byte 1	0x000xFF	UINT8 / rw				
	• 0x20	Byte 32	0x000xFF	UINT8 / rw				
0x6010		Port 2: Input Process Data (struct	ure: \rightarrow Index 0x6000)					
0x6020		Port 3: Input Process Data (struct	ure: \rightarrow Index 0x6000)					
0x6030		Port 4: Input Process Data (struct	ure: \rightarrow Index 0x6000)					
0x6040		Port 5: Input Process Data (struct	ure: \rightarrow Index 0x6000)					
0x6050		Port 6: Input Process Data (structure: → Index 0x6000)						
0x6060		Port 7: Input Process Data (struct	Port 7: Input Process Data (structure: → Index 0x6000)					
0x6070		Port 8: Input Process Data (struct	ure: \rightarrow Index 0x6000)					

11.1.3.3 Input Area (0x6000 - 0x6FFF)

Index	Subindex	Name	Possible values	Data type / access			
0x7000		Port 1: Output Process Data					
	• 0x01	Byte 1	0x000xFF	UINT8 / rw			
	• 0x20	Byte 32	0x000xFF	UINT8 / rw			
0x7010		Port 2: Output Process Data (stru	Port 2: Output Process Data (structure: → Index 0x7000)				
0x7020		Port 3: Output Process Data (stru	cture: \rightarrow Index 0x7000)				
0x7030		Port 4: Output Process Data (stru	cture: \rightarrow Index 0x7000)				
0x7040		Port 5: Output Process Data (stru	cture: \rightarrow Index 0x7000)				
0x7050		Port 6: Output Process Data (stru	Port 6: Output Process Data (structure: → Index 0x7000)				
0x7060		Port 7: Output Process Data (stru	ort 7: Output Process Data (structure: → Index 0x7000)				
0x7070		Port 8: Output Process Data (stru	cture: → Index 0x7000)				

11.1.3.4 Output Area (0x7000 - 0x7FFF)

Index	Subindex	Name	Possible values Data type / access		
0x8000		Port 1: Port Configuration			
	• 0x04	Device ID	0x0000000xFFFFF	UINT32 / rw	
	• 0x05	Vendor ID	0x00000xFFFF	UINT32 / rw	
	• 0x20	IO-Link revision	0x10: IO-Link Revision 1.0	UINT8 / rw	
			0x11: IO-Link Revision 1.1		
	• 0x22	Cycle Time	0x0000 0000: Best possible (Default)	UINT32 / rw	
			• 0x0000 0001: 1 μs		
			 • 0x0002 06C0: 132800 μs		
	• 0x24	Process Data In Length	• 0x00: 0 byte	UINT8 / rw	
			• 0x01: 4 Bytes (Default)		
			• 0x02: 8 bytes		
			• 0x03: 16 bytes		
			0x04: 32 bytes		
	• 0x25	Process Data Out Length	• 0x00: 0 byte	UINT8 / rw	
			Ux01: 4 Bytes (Default)		
			• 0x02: 6 bytes		
			• 0x04: 32 bytes		
	• 0x28	Master Control	0x00: Deactivated	UINT16 / rw	
			0x01: Digital Input		
			0x02: Digital Output		
			0x03: IO-Link (Default)		
0x8008		Port 1: Vendor Specific Port Conf	figuration		
	• 0x01	Validation ID	0x00: No check (Default)	UINT8 / rw	
			0x01: V1.0 Device, no Datastorage		
			0x02: V1.1 Device, no Datastorage		
			0x03: V1.1 Device, Backup + Restore		
			Ox04: V1.1 Device, Restore		
	• 0x02	Reconfigure	Ox00: No action (Default)	UINT8 / rw	
	. 0.02	Dute Curer	OxPF. Activate configuration		
	• 0x03	Byte Swap	Ox00: No action (Default) Ox01: Byte swap	UINT8/IW	
	• 0x04	Mode UA	0x0000: UA = OFF - IO-Link Port Class A	UINT16 / rw	
			• 0x0001: UA = ON - IO-Link Port Class B		
			(Detault)		
	• 0x05	Current Limit LIA	• 0x0002: Digital Output (DO)	LUNT16 / may	
			• 0x07D0: 2000 mA (default)		
	• 0x06	Current Limit US	• 0x0000: 0 mA	UINT16 / rw	
			• 0x01C2: 450 mA		
			• 0x07D0: 2000 mA (default)		
0x8010		Port 2: Port Configuration (structu	re: → Index 0x8000)		
0x8018		Port 2: Vendor Specific Port Conf	figuration (structure: \rightarrow Index 0x8008)		
0x8020		Port 3: Port Configuration (structu	ure: \rightarrow Index 0x8000)		
0x8028		Port 3: Vendor Specific Port Conf	figuration (structure: \rightarrow Index 0x8008)		

11.1.3.5 Configuration Area (0x8000 - 0x8FFF)

Index	Subindex	Name	Possible values	Data type / access		
0x8030		Port 4: Port Configuration (structu	re: \rightarrow Index 0x8000)			
0x8038		Port 4: Vendor Specific Port Configuration (structure: \rightarrow Index 0x8008)				
0x8040		Port 5: Port Configuration (structure: → Index 0x8000)				
0x8048		Port 5: Vendor Specific Port Configuration (structure: → Index 0x8008)				
0x8050		Port 6: Port Configuration (structu	Port 6: Port Configuration (structure: → Index 0x8040)			
0x8058		Port 6: Vendor Specific Port Confi	Port 6: Vendor Specific Port Configuration (structure: → Index 0x8048)			
0x8060		Port 7: Port Configuration (structu	re: \rightarrow Index 0x8040)			
0x8068		Port 7: Vendor Specific Port Configuration (structure: → Index 0x8048)				
0x8070		Port 8: Port Configuration (structure: → Index 0x8040)				
0x8078		Port 8: Vendor Specific Port Confi	guration (structure: \rightarrow Index 0x8048)			

Index	Subindex	Name	Possible values	Data type / access	
0x9000		Port 1: Port Mode Status			
	• 0x04	Device ID	0x0000000xFFFFF	UINT32 / ro	
	• 0x05	Vendor ID	0x00000xFFFF	UINT32 / ro	
	• 0x20	IO-Link revision	0x10: IO-Link Revision 1.00x11: IO-Link Revision 1.1	UINT8 / ro	
	• 0x21	Frame Capability		UINT8 / ro	
	• 0x22	Cycle Time	 0x0000 0000: Best possible 0x0000 0001: 1 μs 	UINT8 / ro	
	• 0x24	PD In Length	 0x002 0600: 132800 µs 0x00: 0 byte 0x01: 4 bytes 0x02: 8 bytes 0x03: 16 bytes 0x04: 32 bytes 	UINT8 / ro	
	• 0x25	PD Out Length	 0x00: 0 byte 0x01: 4 bytes 0x02: 8 bytes 0x03: 16 bytes 0x04: 32 bytes 	UINT8 / ro	
0x9001		Port 1: Serial number IO-Link Dev	vice	STRING / ro	
0x9008		Port 1: Specific IO information			
	• 0x01	Current UA (Pin 2/5)	• 0x0000: 0 mA	UINT16 / ro	
	• 0x02	Current US (Pin 1/3)	 0x07D0: 2000 mA 0x0000: 0 mA 0x07D0: 2000 mA 	UINT16 / ro	
0x9010		Port 2: Port Mode (structure: \rightarrow Ir	ndex 0x9000)		
0x9011		Port 2: Serial number IO-Link Dev	vice	STRING / ro	
0x9018		Port 2: Specific IO information (st	ructure: → Index 0x9008)		
0x9020		Port 3: Port Mode (structure: \rightarrow Ir	ndex 0x9000)		
0x9021		Port 3: Serial number IO-Link Dev	vice	STRING / ro	
0x9028		Port 3: Specific IO information (st	ructure: → Index 0x9008)	,	
0x9030		Port 4: Port Mode (structure: \rightarrow Ir	ndex 0x9000)		
0x9031		Port 4: Serial number IO-Link Dev	vice	STRING / ro	
0x9038	ĺ	Port 4: Specific IO information (st	ructure: → Index 0x9008)		
0x9040		Port 5: Port Mode (structure: \rightarrow Ir	ndex 0x9000)		
0x9041	1	Port 5: Serial number IO-Link Dev	vice	STRING / ro	
0x9048		Port 5: Specific IO information (st	ructure: → Index 0x9008)		
0x9050		Port 6: Port Mode (structure: \rightarrow Ir	ndex 0x9000)		
0x9051		Port 6: Serial number IO-Link Dev	vice	STRING / ro	
0x9058		Port 6: Specific IO information (st	ructure: \rightarrow Index 0x9008)		
0x9060		Port 7: Port Mode (structure: \rightarrow Ir	ndex 0x9000)		
0x9061		Port 7: Serial number IO-Link Dev	vice	STRING / ro	
0x9068		Port 7: Specific IO information (st	ructure: \rightarrow Index 0x9008)		

11.1.3.6 Information Area (0x9000 - 0x9FFF)

Index	Subindex	Name	Possible values	Data type / access		
0x9070		Port 8: Port Mode (structure: → Index 0x9000)				
0x9071		Port 8: Serial number IO-Link Device		STRING / ro		
0x9078		Port 8: Specific IO information (structure: → Index 0x9008)				

Index	Subindex	Name	Possible values	Data type / access
0xA0000		Port 1: Diagnostics Data		
	• 0x01	IO-Link State	 0x00: INACTIVE - Deactivated 0x01: DIGINPUT – Digital Input 0x02: DIGOUTPUT – Digital Output 0x08: OPERATE – IO-Link OPERATE state 0x09: STOP – IO-Link STOP state (Error or no device) 	UINT8 / ro
	• 0x02	Lost frames	0x000xFF	UINT8 / ro
0xA010		Port 2: Diagnostics Data (structure	e: → Index A000)	
0xA020		Port 3: Diagnostics Data (structure	e: → Index A000)	
0xA030		Port 4: Diagnostics Data (structure	e: → Index A000)	
0xA040		Port 5: Diagnostics Data (structure	e: → Index A000)	
0xA050		Port 6: Diagnostics Data (structure	e: → Index A000)	
0xA060		Port 7: Diagnostics Data (structure	e: → Index A000)	
0xA070		Port 8: Diagnostics Data (structure	e: → Index A000)	

11.1.3.7 Diagnosis Area (0xA000 - 0xAFFF)

Index	Subindex	Name	Possible values	Data type / access		
0xF000		Module Device Profile				
	• 0x01	Module Index Distance	0x0010	UINT16 / ro		
	• 0x02	Maximum Number of Modules	0x0008	UINT16 / ro		
0xF100		Device status				
	• 0x01	Port 1: Status	Mapping: Device status (\rightarrow \Box 85)	UINT8 / ro		
	• 0x02	Port 2: Status	Mapping: Device status (\rightarrow \Box 85)	UINT8 / ro		
	• 0x03	Port 3: Status	Mapping: Device status (\rightarrow \Box 85)	UINT8 / ro		
	• 0x04	Port 4: Status	Mapping: Device status (\rightarrow \Box 85)	UINT8 / ro		
	• 0x05	Port 5: Status	Mapping: Device status (\rightarrow \Box 85)	UINT8 / ro		
	• 0x06	Port 6: Status	Mapping: Device status (\rightarrow \Box 85)	UINT8 / ro		
	• 0x07	Port 7: Status	Mapping: Device status (\rightarrow \Box 85)	UINT8 / ro		
	• 0x08	Port 8: Status	Mapping: Device status (\rightarrow \Box 85)	UINT8 / ro		
0xF101		IO-Link Port Qualifier Information	(PQI)			
	• 0x01	Port 1: PQI	Mapping: Port Qualifier Information (\rightarrow \Box 85)	UINT8 / ro		
	• 0x02	Port 2: PQI	Mapping: Port Qualifier Information (\rightarrow \Box 85)	UINT8 / ro		
	• 0x03	Port 3: PQI	Mapping: Port Qualifier Information (\rightarrow \Box 85)	UINT8 / ro		
	• 0x04	Port 4: PQI	Mapping: Port Qualifier Information (\rightarrow \Box 85)	UINT8 / ro		
	• 0x05	Port 5: PQI	Mapping: Port Qualifier Information (\rightarrow \Box 85)	UINT8 / ro		
	• 0x06	Port 6: PQI	Mapping: Port Qualifier Information (\rightarrow \Box 85)	UINT8 / ro		
	• 0x07	Port 7: PQI	Mapping: Port Qualifier Information (\rightarrow \Box 85)	UINT8 / ro		
	• 0x08	Port 8: PQI	Mapping: Port Qualifier Information (\rightarrow \Box 85)	UINT8 / ro		
0xF102		Power Supply Status				
	• 0x01	Port Status UA/US	Mapping: Port Status UA/US (\rightarrow \Box 86)	UINT16 / ro		
	• 0x02	Global Status UA/US	Mapping: Global Status UA/US (\rightarrow \Box 86)	UINT16 / ro		
	• 0x03	Global Voltage UA (in mV)	• 0x4E20: 20 V	UINT16 / ro		
			 • 0x7530: 30 V			
	• 0x04	Global Current UA (in mA)	• 0x0000: 0 mA	UINT16 / ro		
			 • 0x1F40: 8000 mA			
	• 0x05	Global Voltage US (in mV)	• 0x4E20: 20 V	UINT16 / ro		
	. 0×06	Clobal Current LIS (in mA)	• 0x7550.50 V			
	• 0x06	Global Current US (In mA)	• 0x0000. 0 mA			
	ļ		• 0x0E10: 3600 mA			
0xF200		Pin 2 Digital Output Control	1			
	• 0x01	Digital Outputs (Pin 2)	Mapping: Pin 2 Digital Output Control (\Rightarrow \square 86)	UINT16 / rw		

11.1.3.8 Device Area (0xF000 - 0xFFFF)

Mapping: Device status

Byte	Bit												
(offset)	7	6	5	4	3	2	1	0					
n		Error	Code			Port	State						
Legend:													
Port State	Status c	f the IO-Link p	port	4 bit	 0x0: deactivated 0x1: Digital input 0x2: Digital output 0x3: IO-Link - OPERATE 0x4: IO-Link – STOP (error or no device) 								
Error Code	e Error co Note: If same tir played. are supp	de of the IO-L several errors ne, only one e The other erro oressed.	ink device occur at the error is dis- or messages	4 bit	 0x0: No error 0x1: Watcho 0x2: Buffer of 0x3: Invalid 0x4: Invalid 0x5: Invalid 0x6: Invalid 0x7: Invalid 0x8: Invalid 0x8: Invalid 0x9: Invalid 0xA: No dev 0xB: PREOF 0xC: Low vol 0xD: Unspect 0xE: Short of 	r log error overflow device ID vendor ID IO-Link revisior frame capability cycle time length of the ou ice detected PERATIONAL e itage cified error ircuit	n y put data (PD ir itput data (PD error	n) out)					

Mapping: Port Qualifier Information

Byte (offset)		Bit													
	7	6	5	4	3	2	1	0							
n	PVI	DE	DO	DACT	PVO	res.	DI2	DI4							

l agand.	
Leyenu.	

Logona			
• DI4	Status digital input - pin 4 (operating mode: DI)	1 bit	0x0: LOW0x1: HIGH
• DI2	Status digital input - pin 2 (if in use)	1 bit	0x0: LOW0x1: HIGH
• PVO	Port Validity Output: Validity of the output data of the IO-Link device	1 bit	0x0: Invalid0x1: Valid
• DACT	Device deactivated: Shows if the IO-Link port is configured and can be used	1 bit	0x0: Activated and can be used0x1: Deactivated or not available
• DO	Device Operational: Availability of the IO- Link device	1 bit	0x0: Not available0x1: Detected and in OPERATE state
• DE	Device Error: Error or warning occurred; Note: The user needs to determine the cause of the error separately via acyclic services	1 bit	 0x0: No error 0x1: Error (validation error, short circuit, etc.)
• PVI	Port Validity Output: Validity of the input data of the IO-Link device	1 bit	0x0: Invalid0x1: Valid

Mapping: Port Status UA/US

Word (Offset)		Bit														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
n	res.	PWR Port 8	PWR Port 7	PWR Port 6	PWR Port 5	PWR Port 4	PWR Port 3	PWR Port 2	PWR Port 1							

Legend:

PWR Port n Status of the voltage supply on port n

1 bit • 0x0: No error

• 0x1: Overcurrent detected at US and / or UA

Mapping: Global Status UA/US

Word		Bit														
(Offset)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
n	res.	res.	res.	res.	res.	res.	res.	res.	res.	res.	res.	res.	res.	res.	UA	US
Legend: US Status of the global supply voltage US									it • •	0x0: N 0x1: C	lo error)vervolt	age det	ected (US > 3.	6 V)	
• UA	Status of the global supply voltage UA							1 b	1 bit • 0x0: No error0x1: Supply voltage UA not connected							

Mapping: Pin 2 Digital Output Control

Word	Bit															
(Offset)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
n	res.	DO2 Port	DO2 Port	DO2 Port	DO2 Port											

Legend:

• DO2 Port n

Status digital output - pin 2 (operating 1 bit mode: DO)

0x0: LOW0x1: HIGH